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Abstract

ASTON UNIVERSITY
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Similarity search over time series is essential in many applications. However, it may cause

a “dimensionality curse” due to the high dimensionality of time series. Various dimensionality

reduction methods have been developed. Some of them sacrifice max deviation to get a faster di-

mensionality reduction, such as equal-length segment dimensionality reduction methods: Piecewise

Linear Approximation (PLA), Piecewise Aggregate Approximation (PAA), Chebyshev Polynomials

(CHEBY ), Piecewise Aggregate Approximation Lagrangian Multipliers (PAALM) and Symbolic

Aggregate Approximation (SAX). Some sacrifice dimensionality reduction time for the small-

est max deviation, such as adaptive-length segment dimensionality reduction methods: Adaptive

Piecewise Linear Approximation (APLA) and Adaptive Piecewise Constant Approximation (APCA).

APLA uses a guaranteed upper bound for the best max deviation with slow dimensionality reduction

time.

We investigate the existing basic dimensionality reduction techniques for time series data. We

point out the limitations of the existing dimensionality reduction techniques and evaluate the di-

mensionality reduction techniques on real-life datasets. We also conduct preliminary research and

make some improvements to the existing dimensionality reduction techniques. Our experimental
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results on several datasets compare and verify the efficiency and effectiveness of the existing tech-

niques, including several dimensionality reduction techniques, one index-building method, and two

k-Nearest Neighbours (k-NN) search methods.

We propose an adaptive-length segment dimensionality reduction method called Self Adaptive

Piecewise Linear Approximation (SAPLA). It consists of 1) initialization, 2) split & merge itera-

tion, and 3) segment endpoint movement iteration. Increment area, reconstruction area, conditional

upper bound and several equations are applied to prune redundant computations. The experiments

show this method can speed up about n (time series length) times than APLA when reducing the

dimensionality of the original time series with minor max deviation loss. We propose a lower

bound distance measure between two time series to guarantee no false dismissals and tightness for

adaptive-length segment dimensionality reduction methods. When mapping time series into a tree

index, we propose Distance Based Covering with Convex Hull Tree (DBCH-tree) and split node

and pick branch by using the proposed lower bounding distance, not waste area. Our experiments

show that DBCH-tree helps improve k-NN search over time series using dimensionality reduction

methods.
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point č′t in Č′i. The black dot is reconstructed point č′′t in Č′′i . cm=
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Notation Meanings
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M Baseline representation coefficient number

C One original time series

Ĉ Representation of C

Č Reconstructed time series of Ĉ

θi Max deviation of ĉi

βi Segment upper bound

β Sum upper bound

ε(C,Č) ∑
n−1
t=0 |ct − čt |

ω Map ⟨key,value⟩

Q Query time series

S A spatio-temporal time series

l The length of each segment

a,b Two coefficients in the function of linear curve

ri Right endpoint of ĉi

Disteuc Euclidean Distance

Distindex Distance between representations

cmaxi,cmini The maximum and minimum values of the ith segment

MBR
Minimum Bounding Rectangle is the smallest rectangle that spatially

contains the original time series points of the ith segment

MINDIST (Q,R) Minimum distance of MBR R from query times Q

MINDIST (Q,R, t) Minimum distance of MBR R from query times Q at time t

MINDIST (Q,G, t) Minimum distance of region G from query times Q at time t

DistPLA The distance between two reduced PLA series

Table 1: Summary of Notation
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Chapter 1

Introduction

1.1 Background

Similarity search [7] over time series is important in many applications [36], including the stock

market [42], medical science [12], statistics [19], econometrics [56], quantitative finance [32], seis-

mology [3], meteorology [28], geophysics [43], electroencephalography [70], control engineering

[6], astronomy [25] and communications engineering [22]. Time series can be regarded as a high-

dimensional data type, which suggests that time series could be indexed by multidimensional index

structures such as the R-tree [31]. A time series C = {c0, . . . ,cn−1} with n data points can be

considered as a point in an n-dimensional space and given a query time series Q = {q0, . . . ,qn−1}

and a time series C from one dataset. The similarity between these two equal-length time series

is typically measured with a distance measurement. The straightforward distance measurement is

Euclidean distance measurement, shown in Figure 2.1. Euclidean distance [23] is applied for simi-

larity measures between two equal-length time series. In this thesis, the most similar time series has

the smallest Euclidean distance.

Application 1. (Similarity Search in Financial Domain) The stock market is a famously com-

plex and jittery system. The price of company shares might stay the same, rise steadily, or suddenly

crash. The time series of the stock prices may be collected for many years [67]. The mean value

and variance of financial time series often change over time, which means financial time series may

not have Gaussian distribution. Trends are driven by stochastic inflation. Financial time series show

high autocorrelation and cross autocorrelation with other variables over time. People usually want

to make a similarity query on large-scale financial time series data. Thus, we could use dimen-

R.Xue, PhD Thesis, Aston University 2021 18



CHAPTER 1. INTRODUCTION

sionality reduction techniques to reduce the original financial time series dimension and do a quick

similarity search.

Application 2. (Similarity Search in Medical Signal Domain) It is essential to deal with time

series for medical diagnosis problems to recognize existing or potential diseases [29]. For emer-

gency medical service, time series features are a positive trend, special-day effects, seasonal cycles

and autocorrelation. For case-based reasoning, time series is in the form of signals recorded for

billions of seconds, such as electrocardiography (ECG) datasets. Feature extraction and weighting

become complicated and depend on expert knowledge. Thus, we need dimensionality reduction

methods to reduce large-scale medical time series dimensions, and we could use similar queries to

diagnose new coming cases.

1.2 Related Work

Time series similarity search and dimensionality reduction techniques are widely studied and es-

sential fields that provide the basis for many high-level data mining tasks. We could use similarity

search or dimensionality reduction techniques to improve the runtime of classification, clustering,

anomaly detection, motif discovery, semantic segmentation tasks etc. The time series dimensional-

ity reduction technique is vital for decreasing the runtime of the similarity search.

The first use case of dimensionality reduction for the original time series is reducing the whole

storage on the hard disk. Because there is a tremendous volume of the original time series data

generated each second, storing each data point on the hard disk is challenging. The second use case

is to improve the read performance. Some time series could be recorded for several years. Reading

the entire time series from a large volume dataset each time could be less efficient. The third use

case is to prune useless information. Some parts of the original time series would frequently appear

inside the same time series. The fourth use case is for an efficient similarity search in time series

datasets. A Similarity search for the original time series should scan many high dimension time

series, making it low efficient in large databases, especially for nearest neighbour queries.

This thesis focus on equal-length time series data, not the data stream. Each time series has

the same length, denoted as n. The distance measurement for the original equal-length time series

is Euclidean distance measurement. Time series can be regarded as a high-dimensional data type,

suggesting that the similarity query over the original time series would cause a “dimensionality
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curse” [11]. A general framework called Generic Multimedia Indexing Method (GEMINI) [23] uses

the dimensionality reduction technique to transfer the original time series into a lower-dimensional

space (reduced space) by representation coefficients. GEMINI stores the representation coefficients

in the reduced space with a multidimensional index. GEMINI uses a lower bound distance function

of the Euclidean distance to improve the efficiency of the similarity search by introducing no-false-

dismissals.

We apply the branch-and-bound methodology in the k nearest neighbour search. As a similarity

search, the k nearest neighbour search identifies the top k nearest neighbours to the query, called the

k-NN search. For a given lower bound measurement and a given index structure, the efficiency of

the k-NN search depends on the quality of the dimensionality reduction technique. Max deviation

[20, 15, 9, 48, 59] is used to measure the reduction performance of each dimensionality reduction

method. The smaller the max deviation, the more pruning opportunity in the k-NN search.

There are two domains for time series dimensionality reduction techniques: time domain and

frequency domain. We represent time series through the x-axis (timestamp) or y-axis (point value)

for dimensionality reduction. For the y-axis dimensionality reduction, one classic method is Sym-

bolic Aggregate Approximation (SAX) [45], which is already a well-solved problem. For x-axis di-

mensionality reduction, the common choice is equal-length segment dimensionality reduction, such

as Piecewise Linear Approximation (PLA) [15], Piecewise Aggregate Approximation (PAA) [39],

Chebyshev Polynomials (CHEBY ) [9], Piecewise Aggregate Approximation Lagrangian Multipli-

ers (PAALM) [61]. Adaptive-length segment dimensionality reduction creates segments of variable

length to capture changing trends in the original time series. Adaptive Piecewise Constant Approx-

imation (APCA) [40] uses the mean value of the adaptive-length segment to represent low activity

area by a single segment and high activity area by several segments. Adaptive Piecewise-Linear Ap-

proximation (APLA) [48] combines the virtues of PLA [15] and APCA [40]. APLA has O(Nn2) (n is

time series length, N is segment number) time complexity and gets dynamic partition by choosing

segments with minimum segment max deviation.

We focus on the x-axis dimensionality reduction in this thesis because the number of time stamps

is regarded as the number of dimensions, and investigating x-axis compression is already broad

enough with clear potential gains. The y-axis dimensionality reduction method SAX is compared

with other x-axis dimensionality reduction methods in this thesis. We compared SAX on dimen-

sionality reduction time, the pruning power and k-NN search time. SAX is a symbolic version of

the PAA. Symbolic dimensionality reduction of SAX does not have max deviation and does not
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consider the segment trend. Thus, the reconstruction of SAX has lower reconstruction accuracy than

the PAA (symbol → number). We do not compare SAX’s max deviation in this thesis. We know

the extension of SAX could perform a good similarity search on time series. However, we want

to improve the similarity search performance by reducing the max deviation of the dimensionality

reduction method in this thesis. Improvements in x-axis compression already provide good gains.

Focus on x-axis methods is already a sufficiently broad topic. Proposing an extended SAX method

is our future work.

1.3 Motivation

We focus on speeding up the adaptive-length dimensionality reduction method in this thesis. This

section describes the reason for proposing a fast adaptive-length segment dimensionality reduction

method with a small maximum deviation close to optimal, called Self Adaptive Piecewise-Linear

Approximation (SAPLA), the improved lower bound distance measure denoted as DistPAR and the

improved node splitting and branch picking algorithms in the improved index structure.

• Equal-length segment dimensionality reduction method has unstable performance on time

series with a drastic changing trend. For example, PAA shows different performances in

different homogeneous datasets.

Adaptive-length dimensionality reduction method tries to find the approximate segments of

the original time series, but it is time-consuming, especially for regularly changed time series.

APLA tries to minimize the segment max deviation but cannot guarantee getting the minimum

sum max deviation. APLA uses ĉi = {ai,bi,ri} to represent the ith segment. ai and bi are two

coefficients in a linear function čt+ri−1+1 = ai ∗ t +bi, 0≤ t < li, (li = ri− ri−1 is the length of

the ith segment). For example, there are two adjacent segment representations ĉi and ĉi+1. ĉi

already has the minimum max deviation. It is possible that a movement of ĉi right endpoint

would reduce the sum max deviation. Instead of computing the segment max deviation with

O(li) time complexity, the segment max deviation upper bound is proposed in SAPLA in this

thesis. SAPLA also considers merging adjacent segments to reduce the sum max deviation.

Because APLA has the guaranteed error bounds (scan each point to get max deviation) in the

reduction process, APLA has O(Nn2) time complexity (n is the original time series length and

N denotes the segment number after the reducing process). Our experiment shows that the

dimensionality reduction time of APLA is much slower than other methods.
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• A lower bound of actual Euclidean distance between time series helps guarantee no false dis-

missals while doing a similarity search. APCA [40] proposes two lower bounding distance

measures that make adaptive-length dimensionality reduction methods indexable. One keeps

a lower bounding lemma, called DistLB, and another has a tight Euclidean distance approxi-

mation but a non-lower bounding called DistAE . We propose DistPAR, which has a guaranteed

lower bounding lemma and tightness.

• GEMINI [23] structure maps the reduced data into a multi-dimensional index. In a branch-

and-bound [16] search (e.g. K nearest neighbour search denoted as k-NN), R-tree [31] is a

multi-dimensional index. The node splitting and branch picking algorithms in R-tree [31] are

not efficient for homogeneous time series datasets which are from the same data sources (e.g.

temperature sensors). Node splitting algorithm attempts to find a small-area split, and the

branch picking algorithm also tries to pick a branch with a minimum area increase. Minimum

Bounding Rectangle (MBR) of homogeneous time series in R-tree could cause an overlap

problem.

1.4 Contributions

For whole sequence similarity matching, R-tree index, DBCH-tree index and k-NN algorithms are

implemented. Under the GEMINI structure, this thesis proposes one adaptive-length segment di-

mensionality reduction method SAPLA, one lower bounding measure DistPAR for adaptive-length

segment dimensionality reduction methods, and a DBCH-tree structure that uses distance based

node splitting and branch picking algorithms for adaptive-length segment dimensionality reduction

methods. Our implementation language is C++ and can be publicly available on our website [1].

We evaluated several classic dimensionality reduction methods, one R-tree index structure and

two k-NN similarity search methods in Chapter 2. These dimensionality reduction methods include

equal-length segment dimensionality reduction methods and adaptive-length segment dimension-

ality reduction methods. Our experimental results provide a comprehensive comparison under the

same evaluation condition.

We propose a fast adaptive-length segment dimensionality reduction method with a small max-

imum deviation close to optimal, called Self Adaptive Piecewise-Linear Approximation (SAPLA)

overcomes the time complexity problems of APLA. (Chapter 3).

We propose an adaptive-length lower bounding distance measure DistPAR for use with SAPLA
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representation that guarantees a lower bound and the bound is tighter than the commonly used

alternative. (Chapter 4)

We propose a DBCH-tree index structure and the distance based node-splitting and branch pick-

ing algorithm for use with SAPLA. This DBCH-tree solves the overlap problem in time series Min-

imum Bounding Rectangle (MBR) [40] and could efficiently improve indexing. (Chapter 4)

1.5 Limitations

• The dimensionality reduction method that focuses on reducing the Euclidean distance be-

tween the original time series and reconstructed time series from the representation coeffi-

cients is not sufficient enough. For the time series that needs nonlinear time warping of the

local compression or expansion of the time scale. Dynamic Time Warping (DTW ) distance

measurement is better than Euclidean distance measurement.

• This thesis could not propose a dimensionality reduction method that has better max deviation

than the adaptive-length segment dimensionality reduction method APLA and is faster than

the equal-length segment dimensionality reduction method, which has O(n) time complexity.

• This thesis only proposes an adaptive-length segment dimensionality reduction method for

the x-axis dimensionality reduction, not for the y-axis dimensionality reduction.

• This thesis has no research on higher-level data mining tasks like calculating the matrix profile

for motif discovery. There are no higher-level data mining tasks such as classification, motif

discovery, or anomaly detection.

• The proposed adaptive-length segment dimensionality reduction method applies a conditional

upper bound for max deviation reduction, not an unconditional upper bound.

• The similarity search in this thesis is whole sequence matching, not sub-sequence matching.

• The DBCH-tree constructs the index structure based on distance. If the entry does not con-

sider the distance between each other or cannot get accurate distance measures, DBCH-tree

will put dissimilarity entries together and damage the similarity search process.
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1.6 Thesis Outline

This thesis starts with an introduction, followed by datasets used in this thesis, literature review,

proposed adaptive-length segment dimensionality reduction method Self Adaptive Piecewise-Linear

Approximation (SAPLA), adaptive-length lower bounding distance measure DistPAR, distance-based

node splitting and branch picking in DBCH-tree and conclusions. Following are individual chapter

summaries:

Chapter 2 provides a comprehensive literature review of the classic dimensionality reduction

methods, distance measures, and the R-tree index.

Chapter 3 proposes the adaptive-length segment dimensionality reduction method Self Adaptive

Piecewise-Linear Approximation (SAPLA).

Chapter 4 proposes adaptive-length lower bounding distance measure DistPAR that lower bound

Euclidean distance. DistPAR is a tight approximation of the Euclidean distance. We propose a

DBCH-tree that node splitting and branch picking algorithms based on the distance to solve overlap

problems in homogeneous datasets.

Chapter 5 discusses the conclusions and future work.
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Chapter 2

Literature Review

We have analyzed and evaluated seven classic dimensionality reduction technologies (PAA [39],

APCA [40], PLA [15], CHEBY [9], APLA [48], PAALM [61], SAX [60]) through real homogeneous

datasets [18]. We implemented these methods by C++ language. We have found some limitations

and making possible improvements. We introduce the basic knowledge of time series, distance

measure and lower bound lemma in this chapter.

2.1 Definition & Lemma

Definition 2.1.1. Time Series (C). Time series is a set of sequences ci, and each one is recorded at

a specified time ti. Time series are made at fixed time intervals [8]. Time series is like C = {(t0,c0),

(t1,c1), . . . , (tn−1, cn−1)} (t0 < t1 < .. . < tn−1). ti is the time stamp, and ci is the value of the

data point. If two time series have the same length and time stamp, we can regard them as two data

streams in ascending order, like ci = (ti,ci). The whole time series could be presented as C = {c0,

c1, . . . , cn−1}.

Definition 2.1.2. Representation (Ĉ). Ĉ is an N segments sequence as a representation of the

original time series C. Ĉ = {ĉ0, ĉ1, . . ., ĉN−1} (N ≤ n). For an adaptive-length linear curve, ĉi :=

⟨ai,bi,ri⟩ represents the ith segment.

Definition 2.1.3. Reconstructed Time Series (Č). The reconstructed time series is from represen-

tation coefficients, defined as Č = {(t0, č0), (t1, č1), . . . , (tn−1, čn−1)} (t0 < t1 < .. . < tn−1) = {č0,

č1, . . . , čn−1} = {Č0, Č1, . . . ,ČN−1}. The ith reconstructed segment is Či = {čri−1+1, . . . , čri}. Like

+s in Figure 2.4.
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Euclidean Distance

time series 1
time series 2

Figure 2.1: The Euclidean distance can be visualized as the square root of the sum of the squared lengths of the black
lines.

Definition 2.1.4. Euclidean Distance. There are two time series C = {(t0,c0), (t1,c1), . . . , (ti,ci),

. . . , (tn−1,cn−1)} (t0 < t2 < .. . < tn−1) and D = {(t0,d0), (t1,d1), . . . , (t j,d j) , . . . , (tn−1,dn−1)}

(t0 < t1 < .. . < tn−1). Eq. 2.1 shows how to compute the Euclidean distance between two time

series. An example of Euclidean distance computation is shown in Figure 2.1. The Euclidean

distance between two time series is the length of the black lines segment connecting them.

Disteuc(C,D) =

√︄
n−1

∑
i=0

(ci−di)2 (2.1)

Definition 2.1.5. Max Deviation (θi). Max deviation [9] is the maximum absolute difference be-

tween original time series C = {(t0,c0), (t1,c1), . . . , (tn−1, cn−1)} and reconstructed time series

Č = {(t0, č0), (t1, č1), . . . , (tn−1, čn−1)} from representation Ĉ = {ĉ0, ĉ1, . . ., ĉN−1}. For the ith

segment representation ĉi, its segment maximum deviation is θi := maxri
t=ri−1+1 |ct− čt |. This means

the maximum difference between two time series. The maximum equation is shown in Eq. 2.2. An

example of maximum deviation is shown in Figure 2.2.

maximun deviation = max |ci− či|, i ∈ [0, . . . ,n−1] (2.2)
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Maximum Deviation

time series 1
time series 2

Figure 2.2: The maximum deviation can be visualized as the black line.

Definition 2.1.6. k-Nearest-Neighbor(k-NN). Classification is a fundamental and straightforward

non-parametric method. For query object Q, k-NN algorithm searches k (k is a positive integer)

nearest neighbours.

Lemma 1. Lower Bounding Lemma [23]. There two time series C = {(t0,c0), (t1,c1) , . . . ,

(tn−1,cn−1)} (t0 < t1 < .. . < tn−1) and D = {(t0,d0), (t1,d1), . . . , (tn−1,dn−1)} (t0 < t1 < .. .

< tn−1), the representation of these two time series are Ĉ = {ĉ0, ĉ1, . . . , ĉN−1} and D̂ = {d̂0, d̂1, . . .

, d̂N−1}. N << n. The reconstructed time series of these representations Ĉ and D̂ are Č = {(t0, č0),

(t1, č1), . . . , (tn−1, čn−1)} (t0 < t1 < .. . < tn−1) and Ď = {(t0, ď0), (t1, ď1), . . . , (tn−1, ďn−1)} (t0 <

t1 < .. . < tn−1) The lower bounding of them is in Eq. 2.3.

Distindex(Ĉ, D̂) = Disteuc(Č, Ď)≤ Disteuc(C,D) (2.3)

Lower bounding means a distance metric between two reconstructed time series is always less

than or equal to the Euclidean distance between these original time series. The importance of lower

bounding is that when indexing time series, there is no false negative phenomenon.
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2.2 Relevant Dimensionality Reduction Methods [62]

Plenty of dimensionality reduction methods are developed [5] for reducing the dimension (the num-

ber of data points) in the original time series. Figure 2.3 shows a classification of classic dimension-

ality reduction methods. There are two domains for time series dimensionality reduction: time do-

main and frequency domain. The frequency domain contains two classic methods, Discrete Fourier

Transform (DFT ) [23, 58] and Discrete Wavelet Transform (DWT ) [37, 14]. We focus on time

domain reduction in this thesis. We can reduce time series through the x-axis and y-axis. For y-

axis reduction methods, one method is Symbolic Aggregate Approximation (SAX) [46, 26]. For

x-axis reduction methods, one choice is the equal-length segment reduction method, such as Piece-

wise Aggregate Approximation (PAA) [68, 39, 38], Chebyshev polynomials (CHEBY ) [52, 10], In-

dexable Piecewise Linear Approximation (PLA) [51, 15] and Piecewise Aggregate Approximation

Lagrangian Multipliers (PAALM) [61]. For the adaptive-length segment method, we implemented

Adaptive Piecewise Constant Approximation (APCA) [24, 40] and Adaptive Piecewise-Linear Ap-

proximation (APLA) [48].

Seven classic dimensionality reduction methods are implemented, including PAA, APCA, PLA,

APLA, CHEBY , PAALM and SAX . Every method will be introduced in the following sub-sections.

We analyze these dimensionality methods and point out the advantages and disadvantages of these

methods. We make some improvements during our implementation and evaluation. Table 2.1 shows

the summaries of eight dimensionality reduction methods.

Name Time Coeffici. Seg. Num Seg. Size Dim.
∗SAPLA O(n(N + logn)) ai,bi,ri N = M/3 Adaptive x-axis
APLA O(Nn2) ai,bi,ri N = M/3 Adaptive x-axis
APCA O(n logn) vi,ri N = M/2 Adaptive x-axis
PLA O(n) ai,bi N = M/2 Equal x-axis
PAA O(n) vi N = M Equal x-axis
PAALM O(n) vi N = M Equal x-axis
CHEBY O(Nn) chei N = M Equal x-axis
SAX O(n) alphabet N = M Equal y-axis

Table 2.1: Dimensionality Reduction Methods Comparison

2.2.1 Piecewise Aggregate Approximation (PAA) [39]

PAA [62, 39] uses the average value of equal-length segment to represent the original time series

C. PAA has O(n) time complexity. The time cost of reduced time series is faster than sequential

scanning original time series [39, 38]. Its segment number is three times that of SAPLA, as Table
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Figure 2.3: Categorization of dimensionality reduction methods including time reduction and frequency reduction. The
grey colour rectangle is what this thesis compares.
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PAA

Original time series
PAA reconstruction

Figure 2.4: This figure is a visual illustration of the equal-length segment dimensionality reduction method PAA.

2.1 shows.

Given a time series C = {(t0,c0), (t1,c1), . . . , (tn−1,cn−1)} (t0 < t1 < .. . < tn−1), the length

of this time series is n and the segment number is N. The reduced time series is Ĉ = {ĉ0, ĉ1, . . . ,

ĉN−1}, Ĉ has N segments. ĉi is the mean value of the ith segment. n
N is the point number of the ith

segment. The representation coefficient number M = N. Figure 2.4 shows an example of the PAA

reconstruction time series. A time series consisting of one hundred points are projected into twenty

segments. The time series is divided into twenty segments, and the mean value of each segment is

calculated. Each segment contains five points. The equation of every line segment is like y = b in

the linear function a ∗ t + b. For the ith segment representation coefficient, the equation is shown

in Eq. (2.4) [39]. Algorithm 2.2.1 shows the PAA computation of the algorithm. The mean value

transformation of a time series can be calculated in O(n).

ĉi =

⌊︃
N
n

⌋︃⌊ n
N ⌋∗(i+1)−1

∑
j=⌊ n

N ⌋∗i
c j (2.4)

Example 1. There is a time series C = {c0, c1, c2 , c3, c4, c5, c6, c7 } = {8, 6, 6, 4, 4, 4, 5, 7}.
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Algorithm 2.2.1: Compute PAA //O(n)

input : C = {c0, c1, . . . , cn−1}: original time series;
n: time series length;
N: the user defined number of segments;
output: Ĉ = {ĉ0, ĉ1, . . . , ĉN−1}: PAA representation of the original time series C;

1 The length of each segment is l = ⌊ n
N ⌋;

2 for i← 0; i < N; i++ do // O(N)
3 sum← 0;
4 for j← l ∗ i; i < l ∗ (i+1)−1; i++ do // O(l)
5 sum += c j;

6 ĉi← sum
l ;

7 return Ĉ = {ĉ0, . . . , ĉN−1} // O(n) = O(N ∗ l)

The time series length n is eight. The user defined segment number N is four. The length of each

segment l is n÷N = 8÷ 4 = 2. We first compute the summation of each segment is {8+ 6 = 14,

6+4 = 10, 4+4 = 8, 5+7 = 12}. Then we will get the PAA representation by computing the mean

value of each segment Ĉ = {ĉ0, ĉ1, ĉ2, ĉ3} = {14÷2 = 7, 10÷2 = 5, 8÷2 = 4, 12÷2 = 6 } = {7,

5, 4, 6}. The time complexity of computing the mean value of each segment is O(l).

2.2.2 Adaptive Piecewise Constant Approximation (APCA) [40]

The equal-length segment dimensionality reduction methods have limitations. For example, when

the part of original time series in two adjacent segments are similar, it still needs two segments to

represent them. APCA represents the original time series by varying length segments. APCA [40]

uses the average value vi of adaptive-length to represent the original time series C through Haar

wavelet transformation. APCA has O(n logn) time complexity, and APCA focuses on improving the

tightness of individual segment with adaptive-length and constant value. Besides the mean value to

represent every segment, APCA also needs to record the position of every segment.

Given a time series C = {(t0,c0), (t1,c1), . . . , (tn−1,cn−1)} (t0 < t1 < .. . < tn−1), after trans-

formation, APCA representation looks like Ĉ = {ĉ0, ĉ1, . . . , ĉN−1} = {⟨cv0,cr0⟩, ⟨cv1,cr1⟩ , . . . ,

⟨cvN−1,crN−1⟩}. Where cri records the position of the ith segment‘s right endpoint, cvi records the

mean value of the ith segment. The length of every segment can be got by li = cri− cri−1. The

representation coefficient number M = N ∗ 2. Figure 2.5 shows an example of the APCA recon-

struction time series. The idea of APCA dimensionality reduction makes use of the Haar wavelet

transformation method [13]. This method depends on decreasing the normalized magnitude co-

efficient to decide which level of compression is optimal [50]. For represented segments, APCA
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APCA

Original time series
APCA reconstruction

Figure 2.5: This figure is a visual illustration of adaptive-length segment dimensionality reduction method APCA.

replaces represented mean value with the exact mean value.

Algorithm 2.2.2 shows how to compute APCA. APCA first converts original time series into

wavelet compression problem and gets optimal solutions, then converts the solution back to APCA

dimensionality reduction [13]. Haar wavelet transformation has O(n) time complexity. An optimal

reconstruction for every compression level can be achieved by sorting the coefficients in order to

decrease normalized magnitude and discarding small coefficients. If the number of segments is

more than coefficients’ number N, merge adjacent segments until getting N segments.

Example 2. (Computing APCA Dimensionality Reduction [40]). For a time series C = {8, 6, 6, 4,

4, 4, 5, 7}, Table 2.2 makes use of Haar wavelet transformation of time series. First, we pairwise

averaged the value to get a lower-resolution representation of the data with the following average

values [(8+ 6)÷ 2, (6+ 4)÷ 2, (4+ 4)÷ 2, (5+ 7)÷ 2] = [7,5,4,6]. Second, APCA in order to

reconstruct the original time series C, the differences of the second of the averaged values from

the pairwise average are computed, which is [7− 6, 5− 4, 4− 4, 6− 7] = [1,1,0,−1]. We apply

pairwise averaging and different processes recursively on the lower resolution array. We get the

complete transformation shown in Table 2.2. We already have the overall average value of the time
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Algorithm 2.2.2: Compute APCA // O(n logn)

input : C = {c0, c1, . . . , cn−1}: original time series;
n: time series length;
N: the number of segments;
output: Ĉ = {ĉ0, ĉ1, . . . , ĉN−1}: APCA representation of C;

1 if n&1 then
2 Pad it with zeros to make the length of the time series C is a power of two.

3 We do Haar Discrete Wavelet Transform on the time series C.
4 We sort coefficients in order of decreasing normalized magnitude, and we retain the first N

Haar wavelet coefficients.
5 We reconstruct APCA representation of the time series C from retained N Haar wavelet

coefficients.
6 if n was padded with zeros then
7 Truncate it to the original length.

8 Replace represent segment mean values with exact mean values.
9 while the number of segments is greater than N do

10 Merge the pair of segments that can be merged with the least rise in error.

series C is 5.5 in the lowest resolution and seven coefficients. The wavelet transform is [5.5, 0.5, 1,

−1, 1, 1, 0, −1]. We normalized the wavelet transform by dividing each coefficient by 2resolution÷2.

We will get [5.5÷20, 0.5÷20, 1÷2
1
2 , −1÷2

1
2 , 1÷2, 1÷2, 0÷2, −1÷2] = [5.5, 0.5, 1√

2
, − 1√

2
,

0.5, 0.5, 0,−0.5]. Suppose the user defined segment number is N = 3. So we keep the three wavelet

coefficients with the highest normalized magnitude, the first, third and fourth wavelet coefficients

{5.5, 1√
2
, − 1√

2
}. We will get [5.5, 0, 1, −1, 0, 0, 0, 0], and we reconstruct the time series by these

three wavelet coefficients. We will get approximate mean values [6.5, 4.5, 4.5, 6.5]. We replace the

approximate mean value with the exact mean value from the original time series C, and the APCA

representation is Ĉ = {ĉ0, ĉ1, ĉ2 , ĉ3} ={⟨cv0,cr0⟩, ⟨cv1,cr1⟩, ⟨cv2,cr2⟩, ⟨cv3,cr3⟩} = {⟨7,1⟩, ⟨5,3⟩,

⟨4,5⟩, ⟨6,7⟩}. Finally, we merge the second and the third segment to get user defined segment

number N = 3. The final APCA representation is Ĉ = {⟨7,1⟩, ⟨4.5,5⟩, ⟨6,7⟩}.

Resolution Mean Values Coefficients

3 [8, 6, 6, 4, 4, 4, 5, 7] ———
2 [7, 5, 4, 6] [1, 1, 0, -1]
1 [6, 5] [1, -1]
0 [5.5] [0.5]

Table 2.2: Haar Wavelet Transform
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PLA

Original time series
PLA reconstruction

Figure 2.6: The x-axis represents the time, and the y-axis represents the real value, the orange line represents represented
line segments, the equation of every line segment is y = a∗ t +b.

2.2.3 Piecewise Linear Approximation (PLA) [15]

Above PAA and APCA both apply mean values to represent the original time series C. PLA [15]

represents the original time series C with linear function. PLA divides the original time series C into

several equal-length segments as PAA does. Then every segment is represented by a linear function

čt = a× t +b, t ∈ [0, l) [55]. Let ct denote the point value of position t in time series C. a is a slope,

b is a y-intercept in a linear function [54, 41]. For the ith segment, the length of each segment is

l = n
N . PLA has O(n) time complexity.

Given a time series C = {(t0,c0), (t1,c1), . . . , (tn−1, cn−1)} (t0 < t1 < .. . < tn−1), and a user-

defined segment number N, the linear function f (t) = a∗ t +b, t ∈ [0,1, . . . , l) can represent every

segment. Thus after PLA transformation, we will get PLA representation like Ĉ = {ĉ0, ĉ1, . . . ,

ĉN−1} = {⟨a0,b0⟩, ⟨a1,b1⟩, . . . , ⟨aN−1,bN−1⟩}. The representation coefficient number M = N ∗ 2.

Figure 2.6 shows an example of the PLA reconstruction time series. PLA representation coefficients

ai and bi can be got by Eq. (2.5) and Eq. (2.6). Algorithm 2.2.3 shows the PLA computation of the

algorithm.
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ai =
12∑

(i+1)l−1
j=il ( j− il− l−1

2 )c j

l(l−1)(l +1)
i = 0,1,2, . . . ,N−1 (2.5)

bi =
2∑

(i+1)l−1
j=il (2l−1−3( j− il))c j

l(l +1)
i = 0,1,2, . . . ,N−1 (2.6)

Algorithm 2.2.3: Compute PLA //O(n)

input : C = {c0, c1, . . . , cn−1}: original time series;
n: time series length;
N: the user defined number of segments;
output: Ĉ = {ĉ0, ĉ1, . . . , ĉN−1}: PLA representation of the original time series C;

1 The length of each segment is l = ⌊ n
N ⌋;

2 for i← 0; i < N; i++ do // O(N)
3 ai := Equation (2.5);
4 bi := Equation (2.6);
5 ĉi := ⟨ai,bi⟩;
6 return Ĉ = {ĉ0, . . . , ĉN−1} // O(n) = O(N ∗ l)

Example 3. There is a time series C = {c0, c1, c2 , c3, c4, c5, c6, c7 , . . . , c19 } = {7, 8, 20, 15, 18,

8, 8, 15, 10, 1, 4, 3, 3, 5, 4, 9, 2, 9, 10, 10}. The time series length n is twenty. The user defined seg-

ment number N is four. The length of each segment l is n÷N = 20÷4 = 5. We compute the linear

function coefficients ai and bi of the ith segment by Eq. (2.5) and Eq. (2.6). We will get the PLA rep-

resentation Ĉ = {ĉ0, ĉ1, ĉ2, ĉ3} = {⟨a0,b0⟩, ⟨a1,b1⟩, ⟨a2,b2⟩, ⟨a3,b3⟩} = {⟨2.9,7.8⟩, ⟨−1.2,10.8⟩,

⟨0.2,3.4⟩, ⟨1,6⟩}. The time complexity of computing the PLA representation coefficients a and b

of each segment is O(l).

2.2.4 Adaptive Piecewise-Linear Approximation (APLA) [48]

Above APCA uses adaptive-length segment and constant value to represent the original time series.

PLA uses equal-length segment and a linear function a ∗ t + b to represent the original time series.

Thus, APLA uses adaptive-length segment and linear function to represent the original time series.

APLA has O(Nn2) time complexity.

Given a time series C = {(t0,c0), (t1,c1), . . . , (tn−1,cn−1)} (t0 < t1 < .. . < tn−1), and a user

defined segment number N, linear function f (t) = a ∗ t + b can represent every segment. Thus

after transformation, we will get APLA representation like Ĉ = {ĉ0, ĉ1, . . . , ĉN−1} = {⟨a0, b0,

r0⟩, ⟨a1, b1, r1⟩, . . . , ⟨aN−1, bN−1, rN−1⟩}. For the ith segment, the length of each segment is
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li = ri− ri−1. The representation coefficient number M = N ∗3. Figure 2.7 shows an example of the

APLA reconstruction time series.

APLA builds a maximum deviation matrix ϖ [n,N] [48]. ϖ [m, i] is the maximum deviation of

the best i-segment APLA representation to points {0, . . ., m}. m is the right endpoint ri of the ith

segment. Once the best (i−1) -segment APLA representation {⟨a0, b0, r0⟩, . . . , ⟨ai−1, bi−1, ri−1⟩}

is known for each prefix of the points {0, . . ., m− 1}, the best i-segment representation for points

0, . . . ,m can be computed through ϖ [m, i] = minm−1
α=i (ϖ [α, i−1]+ϖi). ϖi is the maximum deviation

of the ith segment where the segment right endpoint ri = m, so the ith APLA segment representation

is ⟨ai, bi, m⟩. α = ri−1 +1 is the left endpoint of the ith segment. The (i−1)th segment representa-

tion is regarded as ⟨ai−1, bi−1, α−1⟩. We can get ϖ [m, i], which is the maximum deviation for the

optimal i-segment APLA representation {⟨a0, b0, r0⟩, . . . , ⟨ai−1, bi−1, α−1⟩, ⟨ai, bi, m⟩}. APLA has

guaranteed maximum deviation bounds in the dimensionality reduction process. However, APLA

has O(Nn2) time complexity. APLA combines the virtues of other dimensionality reduction meth-

ods. APLA reduces the original time series adaptively. APLA represents each segment by a linear

function a∗ t +b, which is better than a constant value. The algorithm of APLA is shown in Algo-

rithm 2.2.4.

Example 4. There is a time series C = {c0, c1, c2 , c3, c4, c5, c6, c7 , . . . , c19 } = {7, 8, 20, 15,

18, 8, 8, 15, 10, 1, 4, 3, 3, 5, 4, 9, 2, 9, 10, 10}. The time series length n is twenty. The user

defined segment number N is four. We compute the linear function coefficients ai and bi of the

ith segment by Eq. (2.5) and Eq. (2.6). APLA builds a maximum deviation matrix ϖ [20,4], an

APLA representation matrix Ĉ[20,4], and a segment left endpoint position matrix A[20,4]. APLA

first computes the a0 and b0 of the first segment representation ĉ0. The segment right endpoint r0

is from 1 to n−1. So, the Ĉ[m,0] (m = 1, . . . ,19) is ⟨1, 7, 1⟩, ⟨6.5, 5.2, 2⟩, ⟨3.6, 7.1, 3⟩, ⟨2.9, 7.8,

4⟩, ⟨0.86, 10.52, 5⟩, ⟨0.035, 11.9, 6⟩, ⟨0.27, 11.4, 7⟩, ⟨0.03, 11.98, 8⟩, ⟨−0.58, 13.6, 9⟩, ⟨−0.75,

14.14, 10⟩, ⟨−0.86, 14.5, 11⟩, ⟨−0.9, 14.6, 12⟩, ⟨−0.84, 14.4, 13⟩, ⟨−0.8, 14.25, 14⟩, ⟨−0.66,

13.6, 15⟩, ⟨−0.68, 13.6, 16⟩, ⟨−0.56, 13, 17⟩, ⟨−0.45, 12.4, 18⟩, ⟨−0.36, 11.86, 19⟩. The ϖ̂ [m,0]

(m = 1, . . . ,19) is 0, 3.66667, 5.7, 6.4, 7.7619, 8.03571, 8.03571, 7.95556, 7.54545, 7.37273, 7.5,

7.63736, 7.4, 7.36429, 7.76765, 7.70588, 8.10664, 8.51228, 8.86015. The A[m,0] (m = 1, . . . ,19)

is . We continue computing the second segment coefficients Ĉ[m,1], ϖ̂ [m,1] and A[m,1], the third

segment coefficients Ĉ[m,2], ϖ̂ [m,2] and A[m,2] and so on.

We will get the APLA representation Ĉ = {ĉ0, ĉ1, ĉ2, ĉ3} = {⟨a0,b0,r0⟩, ⟨a1,b1,r1⟩, ⟨a2,b2,r2⟩,

⟨a3,b3,r3⟩} = {⟨6.5,5.16667,2⟩, ⟨−1,14.8,7⟩, ⟨−0.571429,5.7619,13⟩, ⟨1.14286,4.47619,19⟩}.
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Figure 2.7: An illustration of data reduction method APLA, which is the adaptive-length segment approach.
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Algorithm 2.2.4: Compute APLA [48] //O(Nn2)

input : C = {c0, c1, . . . , cn−1}: original time series;
n : length of time series;
N : number of segment;
output: Ĉ = {ĉ0, ĉ1, . . . , ĉN−1}: APLA representation;

1 Ĉ[n,N] : APLA representation matrix;
2 ϖ [n,N] : maximum deviation matrix;
3 A[n,N] : segment left endpoint position matrix;
4 for m = 1 : n−1 do // O(n∗ (n−1)) = O(n2)
5 Computing the first segment APLA representation ĉ0 to points c0 through cm; // O(l)
6 Ĉ[m,0]← ĉ0;
7 ϖ [m,0]← Computing the maximum deviation of ĉ0; // O(m)
8 A[m,0]← 0; // 2O(Nn2) = O(2Nn2) = O(Nn2)

9 for i = 1 to N−1 do // 2O(Nn2) = O(2Nn2) = O(Nn2)
10 for m = i+1 to n−1 do
11 for α = i to m−1 do
12 Computing the ith segment APLA representation ĉi

13 to points cα throughcm; // O(l)
14 ϖi← Computing the maximum deviation of ĉi; // O(m−α)
15 ϖmax←max{ϖ [α, i−1],ϖi};
16 if α == i or ϖmax < ϖ [m, i] then
17 Ĉ[m, i]← ĉi;
18 ϖ [m, i]← ϖmax;
19 A[m, i]← α;

20 i← N−1;
21 m← n−1;
22 while i ≥ 0 do // O(N)

23 ĉi← Ĉ[m, i];
24 m← A[m, i];
25 i−−;

26 return Ĉ = {ĉ0, . . . , ĉN−1};
27 Time Complexity : O(n2)+O(2Nn2)+O(N) = O(Nn2)
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The time complexity of computing the APLA representation coefficients a and b of each segment is

O(l).

2.2.5 Chebyshev Polynomials Approximation (CHEBY ) [10]

PAA, APCA and PLA are discontinuous functions because they divide the original time series into

several segments. CHEBY is a continuous function. CHEBY [9] uses Chebyshev polynomial coef-

ficient chei to represent the original time series C. The authors declared that Chebyshev coefficients

should be smaller than 25. Our evaluation in Section 3.5 shows that CHEBY falls into the “dimen-

sionality curse” when N > 25. CHEBY has O(Nn) time complexity.

If the linear function can be used to represent the original time series, other functions may

also have a chance to represent the original time series [63]. Thus, the Chebyshev polynomial is

proposed. Chebyshev polynomial is called a minimax polynomial, and is helpful for indexing. The

reason for choosing the Chebyshev polynomial is that it is easy to compute and has optimal minimax

properties. Furthermore, the most optimal polynomials cost much computing time, while simple

polynomials cannot satisfy maximum deviation. Moreover, authors have proposed multi-dimension

time series dimensionality reduction [10].

Given a time series C = {(t0,v0),(t1,v1), . . ., (tn−1,vn−1)} (t0 < t1 < .. . < tn−1) can be regarded

as a discrete function. So we need to transfer the time series from a discontinuous function to

an interval function. Chebyshev polynomial is Pm(t) = cos(mcos−1(t)), t ∈ [−1,1]. We need to

normalize the time stamp t into −1 ≤ t0 < .. . < tn−1 ≤ 1. Algorithm 2.2.5 shows the CHEBY

computation of the algorithm. Time series discrete function is like Eq. (2.7).

S(t) =

⎧⎪⎨⎪⎩
v j i f t = t j

unde f ined otherwise
(2.7)

Second, we divide the normalized t ∈ [−1,1] into n disjoint segments like Eq. (2.8):

I j =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

[︃
−1,

t0 + t1
2

)︃
i f j = 0[︃

t j−1 + t j

2
,
t j + t j+1

2

)︃
i f 1≤ j ≤ n−2[︃

tn−2 + tn−1

2
,1
]︃

i f j = n−1

(2.8)

When we get several intervals, we make use of point value v j to represent interval value like Eq.

R.Xue, PhD Thesis, Aston University 2021 39



CHAPTER 2. LITERATURE REVIEW

CHEBY

Original time series
CHEBY reconstruction

Figure 2.8: The x-axis represents the time, and the y-axis represents the real value. The orange line represents the
reconstruction of Chebyshev coefficients.
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(2.9).

g(t) = v j, i f t ∈ I j, 0≤ j ≤ n−1 (2.9)

However, Eq. (2.9) is too simple to satisfy Lower Bounds Lemma. The weight function w(t) =
1√

1−t2 and the length of each segment are introduced, like Eq. (2.10).

f (t) =
g(t)√︁
w(t)|I j|

, i f t ∈ I j, 0≤ j ≤ n−1 (2.10)

Because f (t) is an interval function to be represented, we could compute the Chebyshev coeffi-

cient for every segment, like Eq. (2.11) and Eq. (2.12).

c0 =
1
n

n−1

∑
j=0

f (t j)P0(t j) (2.11)

ci =
2
n

n−1

∑
j=0

f (t j)Pi(t j) (2.12)

For every segment Ii, i∈{0, 1, . . . , n−1}, t j is the time stamp in Chebyshev polynomial function

Pi(t j), like t j = cos ( j−0.5)π
n . However, we only compute first N Chebyshev polynomial coefficients

to avoid segment number curses and reduce computing time (N ≤ 25).

Example 5. (Computing CHEBY Dimensionality Reduction). Given a time series C = {8, 6,

6, 4, 4, 4, 5, 7}. The user defined segment number N is three. First, we normalize the time

stamp j into [−1,1], t = {t0, . . . , tn−1} = {−1, −0.714286, −0.428571, −0.142857, 0.142857,

0.428571, 0.714286, 1}. We divide the interval [−1,1] into n disjoint sub-intervals, I = {I0, . . . ,

In−1} = {[−1, −0.857143), [−0.857143, −0.571429), [−0.571429, −0.285714), [−0.285714, 0),

[0, 0.285714), [0.285714, 0.571429), [0.571429, 0.857143), [0.857143, 1]}. We compute the time

stamp rt in Chebyshev polynomial Pi(t j), rt = {rt0, . . . , rtn−1} = {0.980785, 0.83147, 0.55557,

0.19509, −0.19509, −0.55557, −0.83147, −0.980785}. We compute the rt in which interval I

= {7, 6, 5, 4, 3, 2, 1, 0}. We compute the interval function f = {8.18022, 6.97226, 6.82366,

7.41107, 7.41107, 10.2355, 8.36671, 9.34882}. The final CHEBY representation is Ĉ = {ĉ0, ĉ1,

ĉ2} = {8.09366, −1.05028, 0.460641}.
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Algorithm 2.2.5: Compute CHEBY //O(Nn)

input : C = {c0, c1, . . . , cn−1}: original time series;
n : length of time series;
N : number of segment;
output: Ĉ = {ĉ0, ĉ1, . . . , ĉN−1}: CHEBY representation;

1 for j = 0 : n−1 do // Normalize the time stamp j into [−1,1]. O(n)
2 t j← 2∗ j−1

n−1 −1;

3 I0←−1;
4 I1← t0+t1

2 ;
5 for j = 1 : n−2 do // Divide into n disjoint sub-intervals. O(n)
6 I2∗ j←

t j−1+t j
2 ;

7 I2∗ j+1←
t j+t j+1

2 ;

8 In∗2−2← tn−2+tn−1
2 ;

9 In∗2−1← 1;
10 for j = 1 : n do // rt j is time stamp in Chebyshev polynomial. O(n)
11 rt j−1← cos ( j−0.5)π

n ;

12 for j = 0 to n−1 do // rt j in which interval. O(n)
13 if rt j == 1 then
14 rt j← n−1;

15 li← 0 ;
16 ri← n−1 ;
17 while li ≤ ri do
18 mi← ri−li

2 ;
19 if I2∗mi ≤ rt j < I2∗mi+1 then
20 rt j← mi;

21 else if rt j < I2∗mi then
22 ri← mi−1;

23 else
24 li← mi+1;

25 for j = 0 : n−1 do // f j is an interval function to be represented. O(n)

26 f j← crt j ÷
√︄

I2∗rt j+1−I2∗rt j√︂
1−rt2

j

;

27 for i = 0 : N−1 do // O(Nn)
28 ĉi← 2

n ∑
n−1
j=0 f j ∗Pi[rt j]; // Pi(rt j) is Chebyshev Polynomial;

29 if !i then
30 ci/= 2;

31 return Ĉ = {ĉ0, . . . , ĉN−1};
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2.2.6 Piecewise Aggregate Approximation Lagrangian Multipliers (PAALM) [61]

PAALM [61] applies PAA and Lagrangian Multipliers on the original time series C. PAALM has

O(n) time complexity. PAALM represents continuous data as a series of patterns, which means it

does not focus on max deviation reduction. Thus we will evaluate it in the k-NN search to show the

importance of max deviation. Figure 2.9 shows the process of PAALM.

Given a time series C = {(t0,c0), (t1,c1), . . . , (tn−1,cn−1)} (t0 < t1 < .. . < tn−1), and a user

defined segment number N, PAALM first applies PAA dimensionality reduction method in Section

2.2.1. PAA uses the mean value of each segment by Eq. (2.4) to represent the original time series C.

We will get Ĉ = {ĉ0, ĉ1, . . . , ĉN−1} after PAA dimensionality reduction. PAALM uses the Lagrangian

multiplier for solving optimisation problems without finding parametric equations for the functions.

PAALM has two advantages: reducing the time series length and showing the differences between

different time series without scaling problem by using unit vectors.

There is a function E(u) = E(u0,u1, . . . ,uN−1). PAALM tries to find the extreme subject to a

single constraint g(u) = 0. PAALM defines a new function L(u,λ ) = E(u)−λ ∗g(u). PAALM then

find the extreme L with respect to both x and λ ( dL
dλ
← 0 and dL

du ← 0). PAALM finds a unit vector

u⃗ = {u0,u1, . . . ,uN−1} for the PAA representation C⃗̂ which maximises the dot product (u⃗ · C⃗̂). Eq.

2.13 and Eq. 2.14 show how to compute constraints.

||u⃗||=

√︄
N−1

∑
i=0

u2
i = 1 (2.13)

g(u) =
N−1

∑
i=0

u2
i −1 = 0 (2.14)

Eq. 2.15 shows the Lagrangian function:

L(u,λ ) = u⃗ · C⃗̂−λ ∗g(u)

=
N−1

∑
i=0

uiĉi−λ ∗ (
N−1

∑
i=0

u2
i −1)

(2.15)

To solve Eq. 2.15, PAALM set ▽L equal to zero in Eq. 2.16 and Eq. 2.17.

dL
dui

= ĉi−2λ ∗ui = 0, f or i = 0,1,2, . . . ,N−1 (2.16)
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dL
dλ

=−(
N−1

∑
i=0

u2
i −1) = 0 (2.17)

PAALM will get Eq. 2.18 by computing Eq. 2.16 and Eq. 2.17. Eq. 2.18 means u⃗ is proportional

to C⃗̂ and they are in the same direction. PAALM will have a unit vector with the properties in Eq.

2.19 by normalising C⃗̂. Therefore, u⃗ is a unit vector projection of PAA representation C⃗̂.

ui =
1

2λ
ĉi, f or i = 0,1,2, . . . ,N−1 (2.18)

u⃗ =
C⃗̂

||C⃗̂||
(2.19)

Algorithm 2.2.6: Lagrangian representation algorithm in PAALM

input : PAA: Ĉ = {ĉ0, ĉ1, . . . , ĉN−1};
output: u;

1 N ← segment number in PAA
2 unit vector variable: u = {u0,u1, . . . ,uN−1}
3 g(u0,u1, . . . ,uN−1)← u2

0 +u2
1 + · · ·+u2

N−1−1
4 f (Ĉ,u)← ĉ0u0 + ĉ1u1 + · · ·+ ĉN−1uN−1

5 L(Ĉ,u,λ )← f (Ĉ,u)−λ ∗g(u)
6 for i = 0 : N−1 do
7 partial derivativei = ĉi−2λ ∗ui

8 partial derivativeλ =−u2
0−u2

1−·· ·−u2
N−1 +1

9 u← Solve(partial derivative0 = 0, . . . , partial derivativeN−1 = 0, partial derivativeλ =
0)

Example 6. (Computing PAALM Dimensionality Reduction). Figure 2.9 shows an example of

PAALM. The user defined segment number N is nine. Given a PAA representation Ĉ = {ĉ0, ĉ1, . . . ,

ĉ8} = {0.093, 1.243, −0.181, 0.617, 1.531, −0.086, −1.113, −0.771, −1.070}. First, we compute

the Lagrangian multiplier λ = 1÷2
√︂

∑
N−1
i=0 (ĉ2

i )
4 ← 0.37. The final PAALM representation is Ĉ

′
= {ĉ′0,

ĉ′1, . . . , ĉ′8} = {λ ∗ ĉ0, λ ∗ ĉ1, . . . , λ ∗ ĉ8} = {0.034, 0.46, −0.067, 0.228, 0.567, −0.032, −0.412,

−0.285, −0.396}.

The change point detection for the original time series C is one of the key issues. Some change

point detection methods identify a region where the change happens. Some change point detection

methods identify the point in the section that the stationary proprieties change. The cumulative sum

(CUSUM) [44] is based on the self-starting method that integrates the CUSUM of the Q chart and
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Figure 2.9: [61] One example of PAALM.
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Figure 2.10: [46] The PAA can be regarded as an attempt to model an original time series with a linear combination of
box basis functions. The length of the original time series is 128. The segment number is eight.

the feature of adaptively varying the reference value. CUSUM uses the probability distribution and

the threshold to detect the change. The Bayesian change point detection method divides the original

time series C into several segments with a probability distribution [2]. Kullback-Leibler Importance

Estimation Procedure (KLIEP) [47] finds abrupt changes in the properties of the original time series.

We focus on reducing the maximum deviation of the dimensionality reduction method from the

user defined segment number N in this paper. Our proposed algorithms are based on the GEMINI

structure. So, the change point detection methods are out of the scope of this thesis.

2.2.7 Symbolic Aggregate Approximation (SAX) [45]

SAX [60] first transforms the original time series C into PAA representation and then symbolizes the

PAA into a discrete string. SAX has O(n) time complexity. Figure 2.11 shows the process of SAX .

Given a time series C = {(t0,c0), (t1,c1), . . . , (tn−1,cn−1)} (t0 < t1 < .. . < tn−1), and a user

defined segment number N, SAX first applies the PAA dimensionality reduction method in Section

2.2.1. PAA uses the mean value of each segment by Eq. (2.4) to represent the original time series C.

We will get Ĉ = {ĉ1, ĉ2, . . . , ĉN} after PAA dimensionality reduction. SAX could be visualized as

an attempt to represent the C with a linear combination of box basis functions as shown in Figure

2.10.

We could apply a further transformation for PAA to get a discrete representation. If the nor-

malized time series have a Gaussian distribution, SAX will produce symbols with equiprobability.
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Figure 2.11: [46] One example of SAX .

If the time series do not have Gaussian distribution, the representation efficiency is slightly dete-

riorated; however, the correctness of the SAX is unaffected [45]. SAX decides the “breakpoints”

which will produce an equal-sized area under the Gaussian curve. Breakpoints are a list of values

{Ψi, . . . ,ΨH−1} on the y-axis that the area under the Gaussian curve. For example, Table 2.3 gives

the breakpoints for values of H ∈ [3,10].

Ψi 3 4 5 6 7 8 9 10

Ψ1 −0.43 −0.67 −0.84 −0.97 −1.07 −1.15 −1.22 −1.28
Ψ2 0.43 0 −0.25 −0.43 −0.57 −0.67 −0.76 −0.84
Ψ3 0.67 0.25 0 −0.18 −0.32 −0.43 −0.52
Ψ4 0.84 0.43 0.18 0 −0.14 −0.25
Ψ5 0.97 0.57 0.32 0.14 0
Ψ6 1.07 0.67 0.43 0.25
Ψ7 1.15 0.76 0.52
Ψ8 1.22 0.84
Ψ9 1.28

Table 2.3: [46] contains the breakpoints that divide a Gaussian distribution ([3,10]) of equiprobable regions.

Example 7. (Computing SAX Dimensionality Reduction). Given a time series C = {1.65359,

0.330719, 0.330719,, −0.992157, −0.992157, −0.992157, −0.330719, 0.992157}. The user de-

fined segment number N is four. The PAA representation C̄ = {c̄0, c̄1, c̄2, c̄3} = {0.992, −0.33,

−0.992, 0.33}. The break point list is Ψ = {−in f ,−0.67,0,0.67}. The representation coefficient

list is al pha= {a,b,c,d}. The average value of the time series C is µ = 0. The standard deviation of

the time series C is σ = 0.85. The normalized PAA representation is C̄ = {c̄0, c̄1, c̄2, c̄3}= {1.1619,

−0.387298, −1.1619, 0.387298}. The final SAX representation is Ĉ = {ĉ0, ĉ1, ĉ2, ĉ3} = {d, b, a,

c}.
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Algorithm 2.2.7: Compute SAX //O(n)

input : C = {c0, c1, . . . , cn−1}: original time series;
n : length of time series;
N : number of segment;
output: Ĉ = {ĉ0, ĉ1, . . . , ĉN−1}: SAX representation;

1 al pha := {a,b,c, . . . ,z};
2 Transfer the original time series C into PAA representation C̄ = {c̄0, c̄1, . . . , c̄N−1} by

Algorithm 2.2.1; // O(n)
3 Ψ.size()← N;

4 µ ← ∑
N−1
i=0 c̄i
N ; // O(N)

5 σ ←
√︂

∑
N−1
i=0 (c̄i−µ)2

N ; // O(N)

6 for i = 0 : N−1 do // O(N)

7 c̄i← c̄i−µ

σ
;

8 for i = 0 : N−1 do // O(N)
9 for j = 1 : N−1 do

10 if Ψ j−1 ≤ c̄i < Ψ j then
11 ĉi← al pha j;

12 return Ĉ = {ĉ0, . . . , ĉN−1};

The SAX dimensionality reduction method is extended to Indexable Symbolic Aggregate Ap-

proximation (iSAX) [66]. The SAX representation coefficients are presented as binary forms, such

as SAX(C,N,a) = {11, 10, 01, 00}. The C is original time series with length n. The N is the num-

ber of representation coefficients. The a is the size of cardinality. iSAX supports the indexing of

massive datasets. Extension of Symbolic Aggregate Approximation (Extended SAX) [49]. SAX is

based on the PAA dimensionality reduction method. The average value based representation misses

important information in some original time series, such as financial time series. Extended SAX

uses the minimum, maximum and average values as string of symbols to represent the shape in each

segment. The Enhanced Symbolic Aggregate Approximation (Enhanced SAX) [4] uses the mini-

mum, maximum and average values as the vector of time series data points. Segmentation Based

Symbolic Representations (SBSR) [35] uses the symbolic alphabet and the episode boundaries to

keep more information during the dimensionality reduction process. Persist [53] is an unsupervised

representation method. Persist represents the original time series to maximize the persistence of

each symbol. Symbolic Fourier Approximation (SFA) [64] is based on Discrete Fourier Transform

(DFT ) and multiple coefficient binning for dimensionality reduction. Genetic Algorithms-Based

Symbolic Aggregate Approximation (GASAX) [27] does not require the “high Gaussianity” of the

original normalized time series. GASAX applies genetic algorithms to find the breakpoints in di-
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mensionality reduction process. Adaptive SAX (aSAX) [57] uses the average value of each segment

as training input and the k-means algorithm to get adaptive “breakpoints”. Adaptive Brownian

Bridge-Based Symbolic Aggregation (ABBA) [21] uses the adaptive polygonal chain to represent

the original time series C into a sequence of tuples and uses mean-based clustering to obtain the

symbolic representation.

2.3 Lower Bounding Distance Measures for Dimensionality Reduc-

tion Methods

Similarity search methods need effective distance measures to compare the similarity of two time

series. The above dimensionality reduction methods and distance measurements are all applied to

the whole sequence match, which means all time series are compared with the same length. R-

tree is proposed [30] and could be used for spatial access methods. k-NN [40] search algorithm is

proposed for similarity search.

We have defined the lower bounding lemma in Lemma 1. There are many lower bounding

measures for equal-length segment dimensionality reduction methods, such as DistPAA [39], DistPLA

[15], DistSAX [46] and DistCHEBY [9]. The lower bounding measure for adaptive-length segment

dimensionality reduction methods is complicated. APCA [13] proposes DistAE for a tight approxi-

mation but not always lower bound the Euclidean distance and DistLB for a less tight approximation

but can guarantee a lower bound of the Euclidean distance. PAALM uses the DistPAA for lower

bounding distance computation. APLA and our proposed SAPLA use the DistLB as the baseline

lower bounding distance computation.

(DistPAA) Suppose we get two PAA representations Q̂ = {q̂0, q̂1, . . . , q̂N−1}, and Ĉ = {ĉ0, ĉ1, . . .

, ĉN−1}. The lower bounds distance DistPAA(Q̂,Ĉ) between them is defined by Eq. (2.20).

DistPAA(Q̂,Ĉ) =

√︄
n
N

N−1

∑
i=0

(q̂i− ĉi)2 (2.20)

(DistPLA) Suppose we get two PLA representations Q̂= {⟨a10,b10⟩, ⟨a11,b11⟩ , . . . , ⟨a1N−1,b1N−1⟩}

and Ĉ = {⟨a20,b20⟩, ⟨a21,b21⟩, . . . , ⟨a2N−1,b2N−1⟩}, The lower bounds distance distPLA(Q̂,Ĉ) be-

tween them is defined by Eq. (2.21).
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a b c d
a 0 0 0.67 1.34
b 0 0 0 0.67
c 0.67 0 0 0
d 1.34 0.67 0 0

Table 2.4: A lookup table used by the DistSAX function

DistPLA(Q̂,Ĉ) =

⌜⃓⃓⎷N−1

∑
i=0

n
N−1

∑
j=0

((a1i−a2i)× j+b1i−b2i)2 (2.21)

(DistCHEBY ) There are two time series Q and C. After Chebyshev polynomial dimensionality

reduction, we can get Chebyshev coefficients Q̂ = {q̂0, q̂1, . . . , q̂N−1} and Ĉ = {ĉ0, ĉ1, . . . , ĉN−1}.

DistCHEBY is shown in Eq. (2.22). π

2 is the weight function to satisfy the lower bound lemma.

DistCHEBY (Q̂,Ĉ) =

√︄
π

2

N−1

∑
i=0

(q̂i− ĉi)2 (2.22)

(DistSAX ) There are two original time series Q and C. we will get Q̂ = {(q̂0, q̂1, . . . , q̂N−1}

and Ĉ = {ĉ0, ĉ1, . . . , ĉN−1} after symbolic representation. DistSAX is shown in Eq. 2.23. The

dist() [46, 26] function could be implemented by applying a table which is illustrated in Table 2.4.

This table is for an alphabet of the cardinality of four, such as d is four. The distance between two

symbols can be got by finding the corresponding row and column. For example, dist(a,b) = 0 and

dist(a,c) = 0.67.

DistSAX(Q̂,Ĉ) =

√︄
n
N

N−1

∑
i=0

dist(q̂i, ĉi)2 (2.23)

(DistAE [40]) DistAE is used for adaptive-length segment dimensionality reduction methods.

DistAE has tight distance approximation but not always lower bound the Euclidean distance. For an

original time series Q = {(t0,q0), (t1,q1), . . . , (tn−1, qn−1)} (t0 < t1 < .. . < tn−1) and an APCA

representation Ĉ = {⟨cv0,cr0⟩, ⟨cv1,cr1⟩, . . ., ⟨cvN−1,crN−1⟩} representation, Eq. (2.24) shows how

to compute DistAE . Because DistAE needs to scan each point in the original time series C, the time

complexity of distance computation is O(n).

DistAE(Q,Ĉ) =

⌜⃓⃓⎷ N

∑
i=1

cri−cri−1

∑
k=1

(qk+cri−1− cvi)2 (2.24)

Because DistAE computes the distance between one original time series and the reconstruction
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Figure 2.12: The DistAE measure can be visualized as the Euclidean distance between Q and the reconstructed time
series of Č.

of representation coefficients, it can tightly approximate the Euclidean distance. It does not satisfy

the triangular inequality [40].

(DistLB [40]) DistLB is used for adaptive-length segment dimensionality reduction methods.

DistLB is a less tight approximation of the Euclidean distance and follows the lower bound lemma.

Given an original query time series Q = {q0, q1, . . . , qn−1}, and an APCA representation Ĉ =

{⟨cv0,cr0⟩, ⟨cv1,cr1⟩, . . ., ⟨cvN−1,crN−1⟩}. First, we need to map the segment endpoint ri of the

APCA representation Ĉ onto the original time series Q, which means we will get an APCA rep-

resentation Q̂. It looks like Q̂ = {⟨qv0,qr0⟩, ⟨qv1,qr1⟩, . . . , ⟨qvN−1,qrN−1⟩}. Ĉ and Q̂ have the

same segment right endpoints, which means {qr0 = cr0, qr1 = cr1, . . . , qrN−1 = crN−1}. The time

complexity to get an APCA representation Q̂ is O(n). The time complexity of DistLB computation

is O(N).

DistLB(Q̂,Ĉ) =

√︄
N−1

∑
i=0

(qri−qri−1)(qvi− cvi)2 (2.25)
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Figure 2.13: Q̂ is obtained by projecting the endpoints of Ĉ onto Q and calculating the mean values of the sections falling
within the projected lines.
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2.4 Index Structure & k-NN Search

For the index building method, R-tree is a height-balanced tree extended from B-tree. It is better

for spatial indexing. The “R” in R-tree means the rectangle. The leaf node of the R-tree records

the identifier of every time series. The non-leaf node records the identifier of the child nodes and

the bounding box of all datasets within the child node. In Figure 2.14, we introduce one R-tree

index structure. Figure 2.15 and Figure 2.16 show the visualization of the R-tree for 2-D rectangles

and 3-D data points. The 2-D rectangle is called the minimum bounding rectangle. The minimum

bounding rectangle (MBR) of the polygon is a common set-up for polygon data. We store the

original time series in hardware and store the R-tree index structure in memory in this thesis. If

datasets are stored in an index structure, search requirements will cost fewer disk pages according

to their locations in the index structure [30]. For similarity search methods, the K nearest neighbours

(k-NN) search method is responsible for searching K most similar time series and applies top-down

traverse at every step by distance measures [33].

The segment style of PLA and CHEBY differs from PAA and APCA. PAA and APCA use mean

values to represent the original time series. However, PLA and CHEBY use coefficients to represent

the original time series. k-NN is instance-based learning and among the simplest of all machine

learning algorithms. There are two varieties of k-NN algorithms. The first is shown in Algorithm

2.4.1, which is applied to SAPLA, APLA, PAALM, SAX , PAA, APCA and PLA. The second is shown

in Algorithm 2.4.3, which is applied to CHEBY .

2.4.1 R-tree Indexing & k-NN Search for APCA

For APCA dimensionality reduction, a time series C = {(t0,v0), (t1,v1), . . . , (tn−1,vn−1)} (t0 < t1

< .. . < tn−1) is represented to Ĉ = {⟨cv0,cr0⟩, ⟨cv1,cr1⟩, . . ., ⟨cvN−1,crN−1⟩}. APCA regards the

N-dimensional space as the APCA space and the points as APCA points. For Algorithm 2.4.1, the

distance between APCA point Ĉ and Q̂ is defined by DistLB(Q̂,Ĉ). While the distance between non-

leaf points U and Q is defined by the minimum distance, MINDIST(Q,R). R is called the minimum

bounding rectangle (MBR). Because PAA can be regarded as APCA with equal size segment. Thus

PAA and APCA can use the same index structure.

In R-tree index, the entry of points consisting a minimum bounding rectangle (MBR) [31, 40].

Figure 2.17a shows an example of one MBR. The original time series is C = {c0, . . . ,c19} = { 7,

8, 20, 15, 18, 8, 8, 15, 10, 1, 4, 3, 3, 5, 4, 9, 2, 9, 10, 10}. The length of time series is twenty.
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Figure 2.14: R-tree index structure.
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Figure 2.15: An R-tree with 2-D rectangles.

R.Xue, PhD Thesis, Aston University 2021 55



CHAPTER 2. LITERATURE REVIEW

Figure 2.16: An R-tree with 3-D points.

Algorithm 2.4.1: k-NN Search(Q,K) for APCA

input : Variable queue: MinPriorityQueue;
Temp queue: MinPriorityQueue;
Result: list;

1 queue.push(root node of index,0);
2 while not queue.IsEmpty() do
3 top = queue.Top();
4 while not temp queue.IsEmpty() and temp queue.top.dist ≤ top.dist do
5 Add temp queue.top to result;
6 if |result|= K then return result;
7 temp queue.pop();

8 queue.pop();
9 if top is an APCA point C′ then

10 Retrieve full time series C from database;
11 temp queue.push(C,Disteuc(Q,C));

12 else if top is a leaf node then
13 foreach data item C in top do queue.push(C,DLB(Q′,C′)) ;

14 else top is a non-leaf node
15 for each child node U in top do
16 queue.push(U,MINDIST (Q,R)) // R is MBR of U
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(b) An example of DistMBR.

Figure 2.17: The white colour circle⃝ is the original time series point. The length of time series is twenty. The reduced
dimension is four. × is a reconstructed time series by SAPLA representation. (a) shows an example of one time series
MBR. It is consist of 4 gray color rectangles s, denoted as G = {Gi[0],Gi[1],Gi[2],Gi[3]}, (0 ≤ i ≤ 3). (b) shows an
example of distance between one time series and MBR, denoted as DistMBR.

It was reduced to four dimensions by SAPLA dimensionality reduction method and the SAPLA

representation is Ĉ = {⟨a0,b0,r0⟩, ⟨a1,b1,r1⟩, ⟨a2,b2,r2⟩, ⟨a3,b3,r3⟩} = {⟨1,7,1⟩, ⟨−3.09,20,6⟩,

⟨−5,15,8⟩, ⟨0.809,1.409,19⟩}. So the MBR [31, 40] of this SAPLA point is denoted as G = {Gi[0],

Gi[1], Gi[2], Gi[3]}, (0≤ i≤ 3). Let i denote the ith segment. Each segment is consist of maximum

point maxri
t=ri−1+1 ct , minimum point minri

t=ri−1+1 ct and segment length li, which means Gi[0] =

minri
t=ri−1+1 ct , Gi[1] = ri−1+1, Gi[2] = maxri

t=ri−1+1 ct and Gi[3] = ri. For example, the first segment

is ĉ0 = ⟨a0,b0,r0⟩ = ⟨1,7,1⟩ and the MBR of the first segment is {G0[0],G0[1],G0[2],G0[3]} = {7,

0, 8, 1}. Figure 2.17b shows an example of distance between one time series and one MBR, denoted

as DistMBR [31, 40]. We denote one MBR as G. If the time series point locates in G, the point

difference is 0. If the time series point locates outside G, we will compute the difference between

the time series point and the border line of G.

2.4.2 R-tree Indexing & k-NN Search for PLA

PLA makes use of representation coefficients to reconstruct the original time series. So, according to

our implementation, we first regard the coefficient as both the maximum and minimum value, then

insert coefficients into R-tree. They look like rec.max = {⟨a0,b0⟩, ⟨a1,b1⟩, . . . , ⟨aN−1,bN−1⟩} and

rec.min = {⟨a0,b0⟩, ⟨a1,b1⟩, . . . , ⟨aN−1,bN−1⟩}. Let m denote one MBR node in one PLA indexing

structure. The distance between one represented query time series QPLA q and one m node needs

a detailed explanation. Because MBR m is the boundary of several PLA representations, and DistMBR
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is the sum of every segment minimum DistPLA, it looks like DistMBR =∑
N−1
i=0 DistPLA(q(i),x(i)) x(i) ∈

m. x(i) is the closest segment in m with q(i), where xa ∈ [amin,amax], xb ∈ [bmin,bmax]. Eq. (2.26)

(i = 0, . . . ,N−1) shows how to compute segment DisPLA.

dist2
PLA(q

(i),x(i)) =

⎛⎜⎜⎝√l
l−1

2
(xa−qa)⏞ ⏟⏟ ⏞

uA

−
√

l(−xb +qb)⏞ ⏟⏟ ⏞
uB

⎞⎟⎟⎠
2

+
l3− l

12
(xa−qa)

2⏞ ⏟⏟ ⏞
v2

A

= (uA−uB)
2 +(vA− vB)

2

(2.26)

uA =
√

l
l−1

2
(xa−qa) (2.27)

uB =
√

l(−xb +qb) (2.28)

vA =

√︃
l3− l

12
(xa−qa) (2.29)

vB = 0 (2.30)

Eq. (2.26) can be transformed to Euclidean distance between two points, A(uA,vA) and B(uB,vB).

Through Eq. (2.27)-(2.30), point A can consist of a line segment v = (
√︂

l2−1
12 / l−1

2 )× u. u ∈

[
√

l× l+1
2 × (amin− qa),

√
l× l+1

2 × (amax− qa)]. In the u− v space, point B is a horizontal seg-

ment lying on the u-axis. The scale of this segment is u ∈ [
√

l× (−bmax +qb),
√

l× (−bmin +qb)].

So dist2
PLA(q

(i),x(i)) can be transferred to line segments minimum distance in u− v space. Figure

2.18 shows an example of two line segments, A1A2 and B1B2 are corresponding to points A and B

[15]. We define A1(uA1,vA1) as the bottom-left point of segment A1A2, A2(uA2,vA2) as the top-right

point. B1(uB1,0) as the left point of the segment B1B2, B2(uB2,0) as the right point. PLA classifies

their relative position into three major cases [15] to get the minimum distance between segments

A1A2 and B1B2. Segment A1A2 only falls into the first and third quadrants in the u− v space. For

cases 1−3, they further divide every case into five subcases, shown in Figure 2.18.

• Case 1: Segment A1A2 is completely contained in the third quadrant of u− v space.

• Case 2: Segment A1A2 is partly contained in the first and third quadrants of u− v space.

• Case 3: Segment A1A2 is completely contained in the first quadrant of u− v space.
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Figure 2.18: Three cases: line Segment A1A2 is completely in the third quadrant, partially in the first and third quadrants,
or completely in the first quadrants. Case1.3 and Case3.3 miss special cases, as Figure 2.21 shows.
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2.4.3 R-tree Indexing & k-NN Search for CHEBY

We have introduced the lower bounding distance computation DistCHEBY (Q̂,Ĉ). When we get

the CHEBY representation coefficients Ĉ = {ĉ0, ĉ1, . . . , ĉN−1} from the original time series

C = {(t0,v0), (t1,v1), . . . , (tn−1,vn−1)} (t0 < t1 < .. . < tn−1). We regard the Chebyshev coeffi-

cients as both maximum and minimum value, then we insert these coefficients into R-tree. They

look like rec.max = {ĉ0, ĉ1, . . . , ĉN−1} and rec.min = {ĉ0, ĉ1, . . . , ĉN−1}. The range search

Algorithm 2.4.2 is applied in CHEBY k-NN search Algorithm 2.4.3.

Algorithm 2.4.2: RangeSearch(Q, Index,r) [9]

input : Q:a d-dimensional query trajectory;
Index:the index of Chebyshev coefficients;
r:a radius for range search.
output: all trajectories within a distance r from Q with respect to Disteuc

1 Apply Eq. (2.9) to Eq. (2.12) to obtain the vector of coefficients for Q
2 Find all trajectories in Index within r of Q using Distcby
3 Retrieve from disk the corresponding (full) trajectories
4 Compute the true distances using Disteuc and discard all the false positives
5 return all trajectories within a distance r from Q with respect to Disteuc

Algorithm 2.4.3: kNNSearch(Q, Index,k) for CHEBY [9]

input : Q: a d-dimensional query trajectory;
Index: the index of Chebyshev coefficients;
r: a radius for range search.
output: the k most similar trajectories to Q with respect to Disteuc

1 Apply Eq. (2.9) to Eq. (2.12) to obtain the vector of coefficients for Q
2 Find the k-nearest neighbours to Q in Index using Distcby
3 Retrieve from disk the corresponding (full) trajectories
4 Compute the true distances using Disteuc and record the maximum max
5 Invoke the range search RangeSearch (Q, Index,max) in Algorithm 2.4.2
6 Retrieve from disk the corresponding (full) trajectories
7 Compute the true distances using Disteuc and retain the nearest k trajectories
8 return the k most similar trajectories to Q with respect to Disteuc
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Figure 2.19: This figure is the first example of the PAA remainder assignment.

2.5 Analysis of Dimensionality Reduction Methods & R-tree Index

Structure & k-NN Search Method

2.5.1 Analysis of PAA Dimensionality Reduction Method

PAA is a fast dimensionality reduction method. PAA is straight to understand and implement. PAA

provides several advantages over competing schemes. We find some disadvantages during our im-

plementation and evaluation.

• Advantages

– Fixed segment length makes the algorithm process quickly.

– Available for large scale datasets.

• Disadvantages

– The mean value of the segment cannot hold all critical information.

– Individual reconstruction error could be high.

– Wave crest or wave trough would be diluted.

– Fixed length of segment lacks flexibility.

– n may not be divisible by N.

For the last disadvantage, we propose two methods in case n cannot be divisible by N. For a

time series C = {(t0,c0),(t1,c1), . . . , (tn−1,cn−1)} (t0 < t1 < .. . < tn−1), the remainder is n%N.

1. First improvement: For the first n%N segments, every segment plus one.

Example 8. Like Figure 2.19, for time series C with length n = 13. Segment number N = 5.

We can get n%N = 3,⌊ n
N ⌋= 2. For the beginning three segments, the length of every segment

is three. For the last two segments, the length of every segment is two. The improved PAA

algorithm is shown in Algorithm 2.5.1.
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Algorithm 2.5.1: Improved PAA 1

input : C: original time series
n: time series length
N: the number of segments;
output: Ĉ: PAA of C;

1 l = ⌊ n
N ⌋;

2 remainder = n%N;
3 first remainderth segments length= l +1;
4 for i = 0; i < N; i++ do
5 sum= every point in the ith segment;
6 ĉi= sum÷ l;

7 return Ĉ = {ĉ0, . . . , ĉN−1};

Figure 2.20: This figure is the second example of the PAA remainder assignment.

2. Second improvement: Merge remainder except for the last segment.

Example 9. Like Figure 2.20, for time series C with length 13. Segment number N = 5. We

can get n%N = 3,⌊ n
N ⌋ = 2. For the beginning four segments, the length of every segment is

2. For the ending segment, the length is five. However, the ending segment is much bigger

than other segments. So, except for the last segment, other segments length l = 2+ 1 = 3.

The improved PAA algorithm is shown in Algorithm 2.5.2.

Algorithm 2.5.2: Improved PAA 2

input : C: original time series;
n: time series length;
N: the number of segments;
output: Ĉ: PAA of C;

1 l = ⌊ n
N ⌋;

2 if l +n%N > N−1 then
3 The length of the first N−1 segments is l +1;

4 for i = 0; i < N; i++ do
5 sum= every point in the ith segment;
6 ĉi= sum÷ l;

7 return Ĉ = {ĉ0, . . . , ĉN−1};
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2.5.2 Analysis of APCA Dimensionality Reduction Method

APCA represents the original time series by varying length segments. The number of coefficients

cannot be confirmed during Haar wavelet transformation, so they keep the most N coefficients [13].

Because one Haar wavelet coefficient could produce one segment, two segments or three segments

APCA representation, the reconstruction operation will produce an APCA representation with the

segment number between N and 3N. If N is too large or too small, N will be high, resulting in high

query costs [13]. Thus it will perform worse than a sequential scan.

• Advantages

– This dimensionality reduction can minimize individual reconstruction errors.

– Save space cost.

• Disadvantages

– Haar wavelet is not possible to get optimal compression level for all datasets.

– If APCA meets the worst case, time series reconstructs to the second level, APCA will

be the same as PAA.

– The second level of the Haar wavelet makes use of the mean value of two adjacent data

points.

– Padding zero may influence the magnitude of the coefficient.

When implementing the APCA dimensionality reduction method, we met several problems

which will influence the dimensionality reduction performance:

• When sorting coefficients according to normalized magnitudes, the normalized magnitudes

could be equal.

• There is no merging choice is the best when the slightest rise in error is same.

• When computing minimum reconstruction error, whether we should get the whole minimum

reconstruction error or get minimum reconstruction error for every merge step.

• For getting all merging cases, recursion is an effective way. However, for large data scales,

recursion costs too much time.
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2.5.3 Analysis of PLA Dimensionality Reduction Method

Compared with PAA and APCA, PLA uses the coefficients of the linear function to represent the

original time series for the dimensionality reduction method.

• Advantages

– The linear function consists a slant segment, and PLA should get a tight dimensionality

reduction.

• Disadvantages

– Computation of coefficients a and b needs to scan each point of the segment.

– Authors miss a special case when segment length is very short for transferring dist2
PLA

(q(i), x(i)) to line segments minimum distance in u-v space [15].

– The equal-length segment may influence individual reconstruction error and cause space

waste.

The condition of every case is listed in Table 2.5. For cases 1.3 and 3.3. We made improvements

during implementation, which are {uA2 < 0,uB2 < uA2,uC ≥ UA2} and {uA1 > 0,uA1 ≤ uB1,uC ≤

UA1}. The reason is that for case 1.3, if the length of segment A1A2 is very short, like a point,

uB2 will be on the left side of uA1. This problem is shown in Figure 2.21 and Figure 2.22. We use

Heron’s formula to calculate the distance between one point and a segment for further improvement.

The improved conditions of case 1 and case 3 are shown in Table 2.6.

2.5.4 Analysis of APLA Dimensionality Reduction Method

APLA represents the original time series by adaptive-length segments and linear function a∗ t +b.

• Advantages

– APLA has guaranteed error bounds in the dimensionality reduction process.

– APLA combines virtues of other dimensionality reduction methods, such as APCA and

PLA.

– APLA represents each segment by a linear function a ∗ t + b, better than the constant

value.
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Cases Switching Conditions mindist2
PLA(q

(i),e(i))

1.1 uA2 < 0,uB1 ≥ uA2 |A2B1|2
1.2 uA2 < 0,uB1 ≤ uA2,uB2 ≥ uA2 |A2C|2
1.3 uA2 < 0,���XXXuA1 ≤uB2 ≤ uA2,uC ≥ uA2 |A2B2|2
1.4 uA2 < 0,uB2 ≤ uA2,uA1 < uC < uA2 |B2C|2
1.5 uA2 < 0,uB2 < uA1,uC ≤ uA1 |A1B2|2
2.1 uA1 ≤ 0,uA2 ≥ 0,uB1 > 0,uC ≥ uA2 |A2B1|2
2.2 uA2 ≤ 0,uA2 ≥ 0,uB1 > 0,uC < uA2 |B1C|2
2.3 uA2 ≤ 0,uA2 ≥ 0,uB1 ≤ 0,uB2 ≥ 0 0
2.4 uA2 ≤ 0,uA2 ≥ 0,uB2 < 0,uC > uA1 |B2C|2
2.5 uA2 ≤ 0,uA2 ≥ 0,uB2 < 0,uC ≤ uA1 |A1B2|2
3.1 uA1 > 0,uB1 > uA2,uC ≥ uA2 |A2B1|2
3.2 uA1 > 0,uB1 > uA1,uA1 < uC < uA2 |B1C|2
3.3 uA1 > 0,uA1 ≤ uB1���XXX≤ uA2,uC ≤ uA1 |A1B1|2
3.4 uA1 > 0,uB2 > 0,uB1 ≤ uA1 ≤ uB2 |A1C|2
3.5 uA1 > 0,uA1 ≥ uB2 |A1B2|2

Table 2.5: Switching conditions for different cases

Cases Switching Conditions mindist2
PLA(q

(i),e(i))

1.1 uA2 < 0,uB2 < uA2 Compute distance between B2 and segment A1A2
1.2 uA2 < 0,uB2 ≥ uA2 Compute distance between A2 and segment B1B2
3.1 uA1 > 0,uB1 > uA2 Compute distance between B1 and segment A1A2
3.2 uA1 > 0,uB1 ≤ uA1 Compute distance between A1 and segment B1B2

Table 2.6: Improvement by our implementation for case 1 and 3
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Figure 2.21: For case 1.3, when |A1A2| is too short, the condition uA1 ≤ uB2 ≤ uA2 is wrong.
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Figure 2.22: For case 3.3, when |A1A2| is too short, the condition uA1 ≤ uB1 ≤ uA2 is wrong.
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– Given user defined dimensionality reduction coefficient number M, APLA segment num-

ber N = 1
3 ∗M. APLA could use few segment number to represent original time series.

• Disadvantages

– APLA has O(Nn2) time complexity. n is the original time series length. N is the segment

number.

When implementing APLA dimensionality reduction method, we improve some steps:

• We apply our proposed equations Eq. (3.2), (3.3), (3.18), (3.19), (3.20), (3.21), (3.22), (3.23)

in lines 5 and line 13 of the Algorithm 2.2.4 to speed up coefficients a and b computation.

Let l denote the segment length. The time complexity of coefficients a and b computation is

from O(l) to O(1).

2.5.5 Analysis of CHEBY Dimensionality Reduction Method

• Advantages

– Chebyshev polynomial is a continuous function. Thus the reconstruction effectiveness

is good from a visual perspective, which is shown in Figure 2.8.

– Multi-dimensional time series k-NN search was proposed.

• Disadvantages

– The maximum deviation and sum deviation of CHEBY is not always better than PAA,

APCA and PLA.

– Computing procedure where Eq. (2.11) and Eq. (2.12) may cost much time if the

number of coefficients is large.

– The number of coefficients should be smaller than 25. Otherwise, this method will be

involved in the dimensionality curse.

– DistMBR algorithm has not been provided so far [10], cannot get the distance between an

internal node and query time series.

– Reconstruction has to avoid weight function w(t) = 1√
1−t2 .
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Name Lower Bounding Lemma Segment Size
DistPAR ✓ Adaptive-Length
DistLB ✓ Adaptive-Length
DistAE Adaptive-Length
DistPLA ✓ Equal-Length
DistCHEBY ✓ Equal-Length
DistPAA ✓ Equal-Length
DistSAX ✓ Equal-Length

Table 2.7: Lower Bounding Measures Comparison.

2.5.6 Analysis of SAX Dimensionality Reduction Method

• Advantages

– As an equal-length segment dimensionality reduction method, SAX has a smaller dimen-

sionality reduction time than adaptive-length segment dimensionality reduction meth-

ods.

– SAX proposes a lower bounding measures for symbolic dimensionality reduction meth-

ods.

• Disadvantages

– Some time series datasets do not have the Gaussian distribution.

– The user defines the number of symbols.

– The reconstruction of SAX is from symbol to number.

2.5.7 Analysis of Lower Bound Distance Measurements

Though DistAE and DistLB are good lower bound distance measurements for adaptive-length seg-

ment dimensionality reduction methods, DistAE and DistLB have limitations. DistAE cannot keep

lower bounding lemma, and DistLB cannot get tight Euclidean distance approximation. We propose

the lower bound distance measurement DistPAR for adaptive-length segment dimensionality reduc-

tion methods with tight approximation and a lower bounding lemma. The comparison of equal-

length segment lower bound distance measures and adaptive-length segment lower bound distance

measures is shown in Table 2.7.
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2.5.8 Analysis of R-tree Index Structure

• For APCA index calculation, APCA proposes a new minimum bounding rectangle (MBR)

for index distance calculation. APCA tries to get the maximum value and minimum value

for every segment. However, we should be aware when the maximum value is equal to the

minimum value during our implementation. Volume calculation should miss this situation.

• For PLA and CHEBY implementation, we did not find how to insert dimensionality reduction

coefficients into the R-tree index. For CHEBY , we do not find how to get index distance like

MBR. When the maximum value is equal to the minimum value, we propose |maximum value|

as the factor of volume calculation.

2.5.9 Analysis of k-NN Search Method

(K-nearest-neighbor(k-NN)) Classification is a fundamental and simple non-parametric method.

For query object Q, k-NN algorithm searches K (K is a positive integer) nearest neighbours. k-NN

is instance-based learning and among the simplest of all machine learning algorithms. The k-NN

algorithms for time series are shown in Algorithm 2.4.1 [40], which is applied to PAA, APCA and

PLA. The second is shown in Algorithm 2.4.3, which is applied to CHEBY .

During our implementation and evaluation, we find Algorithm 2.4.1 [40] could be improved to

speed up the k-NN search. The original algorithm uses lists data structure to store temp Euclidean

distance and result Euclidean distance. Thus, line 4 in Algorithm 2.4.1 has to scan all records in

the temp list during the while loop. The time complexity is O(temp.size). However, We do not

need to scan each record if we use a priority queue to store the temp Euclidean distance. The time

complexity could be reduced to O(log(temp.size)).

2.6 Conclusion

In this chapter, we introduce the background of time series and several dimensionality reduction

methods. For the whole sequence similarity matching, R-tree index and k-NN algorithms are im-

plemented. A comprehensive revision of seven classic dimensionality reduction methods is given

in this chapter. We evaluated these methods with real datasets. We concluded that no method has

an absolute advantage and is always better than other methods.
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Name Frequency Time Single Dim Xaxis Yaxis Equal Size

APLA ✓ ✓ ✓
PAA ✓ ✓ ✓ ✓
PAALM ✓ ✓ ✓ ✓
APCA ✓ ✓ ✓
PLA ✓ ✓ ✓ ✓
CHEBY ✓ ✓ ✓ ✓
DWT ✓ ✓ ✓ ✓
DFT ✓ ✓ ✓ ✓
SAX ✓ ✓ ✓ ✓

Table 2.8: Comparison of Dimensionality Reduction Methods
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Chapter 3

Dimensionality Reduction Method

SAPLA

3.1 Overview

Similarity search over time series is essential in many applications, but it may cause a “dimensional-

ity curse” due to the high dimensionality of time series. Various dimensionality reduction methods

have been developed. Some of them sacrifice max deviation to get faster dimensionality reduction.

One method, Adaptive Piecewise-Linear Approximation (APLA), uses guaranteed upper bounds for

the best max deviation with slow dimensionality reduction time. We propose an adaptive-length

dimensionality reduction method called Self Adaptive Piecewise-Linear Approximation (SAPLA).

It consists of 1) initialization, 2) split & merge iteration, 3) segment endpoint movement iteration.

Increment area, reconstruction area and several equations are applied to prune redundant computa-

tions. Initialization scans time series once to get initial dimensionality reduction. An increment area

threshold is proposed to get segment endpoints. Split & merge iteration focus on sum upper bound

reduction and adjusting segment number to user-defined number N. Upper bound is proposed as

threshold for candidate split segment and iteration. Reconstruction area threshold is proposed to

find candidate adjacent segments to be merged. Segment endpoint movement iteration is proposed

to adjust segment left and right endpoints for sum upper bound reduction. Several equations are

introduced to speed up segment coefficients computation. In the next chapter, we propose a lower

bound distance measure between two time series to guarantee no false dismissals and tightness for

adaptive-length dimensionality reduction methods. When mapping time series into the proposed
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DBCH-tree, we split node and pick branch by lower bounding distance, not waste area. we experi-

mentally verify different dimensionality reduction technologies for time series data in terms of their

max deviation, dimensionality reduction time.

3.1.1 Motivation

APLA combines the virtues of APCA [40] and PLA [15] for the smaller max deviation. Because

APLA has guaranteed error bounds (scan each point to get max deviation) in the reduction process,

APLA has O(Nn2) time complexity (n is the original time series length and N denote the segment

number after the reducing process). Our experiment shows that APLA is much slower than other

methods. APLA [48] tries to minimize the segment max deviation, not the minimum of the sum

max deviation. For example, two adjacent segments are denoted as ĉi and ĉi+1. ĉi already has the

minimum max deviation. It is possible that a movement of ĉi the right endpoint would reduce the

sum max deviation.

Fig. 3.1 illustrates a virtual comparison of SAPLA (Fig. 3.1a), APLA (Fig. 3.1b), APCA (Fig.

3.1c) and PLA (Fig. 3.1d). We compare the sum max deviation between the original and recon-

structed time series. The length of original time series is 20. For a fair comparison, these methods

have the same representation coefficients number M = 12 but not the same segment number (de-

noted as N). SAPLA and APLA use fewer segments to get better sum max deviations than APCA

and PLA.

APCA [40] proposes two lower bounding distance measures that make adaptive-length dimen-

sionality reduction methods indexable. One keeps lower bounding lemma, called DistLB, another

has tight Euclidean distance approximation but non-lower bounding, called DistAE . We propose

DistPAR, which has guaranteed lower bounding lemma and tightness.

The rest of this chapter is organized as follows. Section 3.2 reviews related methods. Section

3.3 gives an overview of definitions. Section 3.4 introduces SAPLA. Section 4 introduces proposed

lower bounding distance measure and improved node split algorithms. Section 3.5 demonstrates

experiment results.

3.2 Related Work

We have evaluated seven relevant methods, PLA, APLA, APCA, PAA, CHEBY , PAALM, SAX and

our proposed SAPLA. This section provides a quick review of relevant methods. Let M denotes the
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(a) Reconstruction of SAPLA. Max Deviation = 9.27273. N = 4
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(b) Reconstruction of APLA. Max Deviation = 17.4667. N = 4
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(c) Reconstruction of APCA. Max Deviation = 18.4167. N = 6
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(d) Reconstruction of PLA. Max Deviation = 19.3999. N = 6

Figure 3.1: A visual comparison of time series dimensionality reduction methods. ⃝ is original time series. × is
reconstructed time series from representation. N is segment number.
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representation coefficient number. Table 2.1 shows the summaries of eight dimensionality reduction

methods.

3.3 Preliminaries

We introduced the definitions of time series (C), representation (Ĉ), reconstructed time series (Č),

and max deviation (θi) in Section 2.1.

Definition 3.3.1. Segment Upper Bound (βi). βi is proposed to bound segment max deviation at

different stages. β is the sum upper bound that β = ∑
N−1
i=0 βi. There are four stages to compute

βi in this thesis. 1) Computing βi when SAPLA initializes C into Ĉ. 2) Computing βi from a

merge operation. 3) Computing βi from a split operation. 4) Computing βi from segment endpoints

movements.

3.4 Self Adaptive Piecewise Linear Approximation (SAPLA)

SAPLA focuses on finding segment endpoints to reduce the sum upper bound of segment max de-

viation. SAPLA consists of initialization; split & merge iteration; segment endpoint movement

iteration. Fig. 3.2 shows an example of the SAPLA process.

Fig. 3.3 shows the framework of SAPLA. In the initialisation stage, users set a segment number

N. SAPLA initializes time series C into Ĉ. In the second stage, split & merge iteration reduces

the sum upper bound by splitting a segment with the maximum upper bound into two segments

and merging two adjacent segments with the minimum reconstruction area. Finally, the segment

endpoint movement iteration helps to reduce the sum upper bound. Finally, we will get SAPLA

representation Ĉ = {⟨a0,b0,r0⟩, . . . ,⟨aN−1,bN−1,rN−1⟩}.

3.4.1 Proposed Equations and Area Computation

Increment Area

SAPLA represents the ith segment by ĉi = ⟨ai,bi,ri⟩. Let ri denote the right endpoint position of this

segment. Let li denote the segment length. Let Ci denote the original time series in this segment.

Let Či denote the reconstructed time series in this segment. Let r′i denote the right point position

followed by ĉi that r′i = ri+1. Thus, the following original point value is cr′i and l′i = li+1. Suppose

there is a new segment called Increment Segment whose original time series is C′i = {Ci,cr′i}. Its
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(a) After initialization, max deviation = 14.6727.
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(b) After split & merge iteration, max deviation = 10.6061.
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(c) After segment endpoint movement, max deviation = 9.27273.

Figure 3.2: An example of the SAPLA process. Grey circle⃝ is the original time series point. n = 20, N = 4. The blue
cross × is reconstructed time series point from SAPLA.
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Figure 3.3: Framework of SAPLA: 1) Initializing C into Ĉ. 2) Split & merge iteration reduces β of Ĉ. 3) Segment
endpoint movement iteration reduces β of Ĉ.

R.Xue, PhD Thesis, Aston University 2021 77



CHAPTER 3. SAPLA

SAPLA representation is ĉ′i = ⟨a′i,b′i,r′i⟩. The computation of a′i,b
′
i by Eq. (2.5) and (2.6) is O(l′i)

time complexity. Thus we propose an extended equation of Eq. (2.5) and (2.6) in Eq. (3.2) and

Eq. (3.3) that its time complexity is O(1).

sumi = li ∗ [
(li−1)

2
∗ai +bi]

=
li(li−1)

2
∗ai + li ∗bi

(3.1)

a′i =
12∑

li
t=0(t−

li
2 )ct+ri−1+1

li(li +1)(li +2)

=
12∑

li−1
t=0 [(t−

li
2 )ct+ri−1+1]

li(li +1)(li +2)
+

12(li− li
2 )∗ cr′i

li(li +1)(li +2)

=
li−1
li +2

∗
12∑

li−1
t=0 [(t−

li−1
2 −

1
2)ct+ri−1+1]

li(li−1)(li +1)
+

12(li− li
2 )∗ cr′i

li(li +1)(li +2)

=
li−1
li +2

∗
12∑

li−1
t=0 [(t−

li−1
2 )ct+ri−1+1]

li(li−1)(li +1)

− li−1
li +2

∗
12∑

li−1
t=0 [(

1
2)ct+ri−1+1]

li(li−1)(li +1)
+

12(li− li
2 )∗ cr′i

li(li +1)(li +2)

=
li−1
li +2

∗ai +
6(li ∗ cr′i − sumi)

li(li +1)(li +2)

=
(li−2)(li−1)ai

(li +1)(li +2)
+

6(cr′i −bi)

(li +1)(li +2)

(3.2)

b′i =
2∑

li
t=0[(2li +1−3t)ct+ri−1+1]

(li +1)(li +2)

=
2∑

li
t=0[(2li−1−3t +2)ct+ri−1+1]

(li +1)(li +2)
+

2(1− li)cr′i
(li +1)(li +2)

=
li

li +2
∗

2∑
li−1
t=0 [(2li−1−3t)ct+ri−1+1]

li(li +1)

+
4∑

li−1
t=0 ct+ri−1+1

li(li +1)
+

2(1− li)cr′i
(li +1)(li +2)

=
li

li +2
∗bi +

4sumi +2(1− l1)cr′i
(li +1)(li +2)

2(li−1)(aili− cr′i)+(li +5)libi

(li +1)(li +2)

(3.3)
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Let Č
′
i denote the reconstructed segment time series from ĉ′i. Thus, č′r′i = a′i ∗ li + b′i is the last

point in Č
′
i, and čr′i = ai ∗ li + bi is the extended point from Či. We could get Č

e
i = {Či, čr′i}, the

extended segment of Či, called Extended Segment. Fig. 3.4 presents an example of Č
e
i and Č

′
i. We

find Č
e
i and Č

′
i always intersect. Thus, we can get Lemma 3.4.1.

Lemma 3.4.1. Increment segment Č
′
i and Extended segment Č

e
i have one intersection point, denoted

as τ .

Proof. For two segments Č
′
i and Č

e
i in Figure 3.4. Č

′
i[1] = b′i is the left endpoint of Č

′
i. Č

e
i [1] = bi is

the left endpoint of Č
e
i . Let d1 denote their left endpoint difference. Eq. (3.4) shows how to compute

d1.

d1 = |Č
′
i[1]−Č

e
i [1]|

= b′i−bi

= a′ili +b′i− (aili +bi)

=
(li−1)((ai ∗ li +bi)− cr′i)

(li +1)(li +2)

=
(li−1)(čr′i − cr′i)

(li +1)(li +2)

(3.4)

Č
′
i[l
′
i ] = č′r′i is the right endpoint of Č

′
i. Č

e
i [l
′
i ] = čr′i is the right endpoint of Č

e
i . Let d4 denote their

right endpoint difference. Eq. (3.5) shows how to compute d4.

d4 = |Č
′
i[l
′
i ]−Č

e
i [l
′
i ]|

= č′r′i − čr′i

= a′ili +b′i− (aili +bi)

=
2(2li +1)(cr′i − (ai ∗ li +bi))

(li +1)(li +2)

=
2(2li +1)(cr′i − čr′i)

(li +1)(li +2)

(3.5)

We could get d1 ∗ d4 ≤ 0 in Eq. (3.6). So, Č
′
i and Č

e
i have one intersection point τ unless

d1 == d4.
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Figure 3.4: Example of Increment Area ε(Č′i,Č
e
i ) simplified as two green triangles △ . ⋄ is intersection point τ . The

black circle is original point ct in C. The grey dashed dot is reconstructed point čt in Če
i . The black dot is

reconstructed point č′t in Č′i. t ∈ [0,n−1].
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d1 ∗d4 =
(li−1)(čr′i − cr′i)

(li +1)(li +2)

∗
2(2li +1)(cr′i − čr′i)

(li +1)(li +2)

=
−

≥0⏟ ⏞⏞ ⏟
2(2li +1)(li−1)(cr′i − čr′i)

2

(li +1)2(li +2)2⏞ ⏟⏟ ⏞
>0

(3.6)

Because of Lemma 3.4.1, we can define the area between Č
′
i and Č

e
i in Definition 3.4.1, called

Increment Area. Let ε denote the summation of absolute difference between two time series, that is

ε(C,Č) := ∑
n−1
t=0 |ct − čt |.

Definition 3.4.1. Increment Area (ε(Č′i,Č
e
i )). ε(Č

′
i,Č

e
i ) is an area between the Increment Segment

Č
′
i and Extended Segment Č

e
i . ε(Č

′
i,Č

e
i ) can be simplified as an area of 2 triangles. Fig. 3.4 presents

an example of ε(Č
′
i,Č

e
i ), ε(Č

′
i,Č

e
i ) is two green triangles.

βi Segment Upper Bound in Initialization

Algorithm 3.4.1 introduces get max() function for upper bound computation. Let [] denote the

order of points in one segment, such as čri−1+1 = Či[1], čri = Či[li]. Let max d denote temp max

value during increment process. We will get upper bound like βi = max( get max([1, li, l′i], C′i , Č
′
i,

Č
e
i ),max d) ∗li. Theorem 3.4.2 proves we do not need to consider four point differences because

they are always smaller than |C′i [l′i ]− Č
e
i [l
′
i ]|. Theorem 3.4.3 provides the conditions that make

βi ≥ εi.

Algorithm 3.4.1: get max() denoted as max di

input : v := vector of id to compute;
Ci, Qi, Ti := segment time series;
output: Maximum absolute difference

1 Function get max(v, Ci, Qi, Ti):
2 m← 0;
3 foreach k in v do
4 m← max(m, |Ci[k]−Qi[k]|, |Ci[k]−Ti[k]|, |Qi[k]−Ti[k]|);
5 return m;
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Theorem 3.4.2. Because two segments Č
′
i and Č

e
i have one intersection point (Lemma 3.4.1) in

Figure 3.4. Č
′
i[1] = b′i is the left endpoint value of Č

′
i. Č

e
i [1] = bi is the left endpoint value of Č

e
i . Let

d1 denote their left endpoint difference. We can get d1 = |Č
′
i[1]−Č

e
i [1]|= |b′i−bi|. Č

′
i[li] = č′ri

is the

left point of right endpoint in segment Č
′
i. Č

e
i [li] = čri is the left point of right endpoint in segment Č

e
i .

We can get d2 = |Č
′
i[li]−Č

e
i [li]|= |č′ri

− čri |. Č
′
i[l
′
i ] = č′r′i is the right endpoint of segment Č

′
i. C′i [l

′
i ] = cr′i

is the right endpoint of original time series segment C′i . We can get d3 = |Č
′
i[l
′
i ]−C′i [l

′
i ]|= |cr′i − č′r′i |.

Č
e
i [l
′
i ] = čr′i is the right endpoint value of segment Č

e
i . We can get d4 = |Č

′
i[l
′
i ]− Č

e
i [l
′
i ]| = |č′r′i − čr′i |.

The right endpoints difference between original time series segment C′i and extended segment Č
e
i is

denoted as d5 = |Č
e
i [l
′
i ]−C′i [l

′
i ]|.

So, we could get d4 ≥ d1, d4 ≥ d2 and d5 = d3 +d4.

Proof. li > 1 in this thesis. As Fig. 3.4 shows, Eq. (3.7) shows d4 ≥ d1. Eq. (3.8) shows d4 ≥ d2.

Eq. (3.9) shows d5 = d3 +d4.

d4 ≥ d1⇒

|a′ili +b′i− (aili +bi)| ≥ |b′i−bi| ⇒
2(2li +1)|cr′i − (ai ∗ li +bi)|

(li +1)(li +2)
≥

(li−1)|cr′i − (ai ∗ li +bi)|
(li +1)(li +2)

⇒

2(2li +1)|cr′i − čr′i |
(li +1)(li +2)

≥
(li−1)|cr′i − čr′i |
(li +1)(li +2)

⇒

2(2li +1)> li−1⇒

li +1 > 0

(3.7)

d4 ≥ d2⇒

|a′ili +b′i− (aili +bi)| ≥ |a′i(li−1)+b′i− (ai(li−1)+bi)| ⇒
2(2li +1)|cr′i − (ai ∗ li +bi)|

(li +1)(li +2)
≥

4(li−1)|cr′i − (ai ∗ li +bi)|
(li +1)(li +2)

⇒

2(2li +1)|cr′i − čr′i |
(li +1)(li +2)

≥
4(li−1)|cr′i − čr′i |
(li +1)(li +2)

⇒

2(2li +1)> 4(li−1)

6 > 0

(3.8)
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Figure 3.5: Example of proof βi ≥ θi in general cases, suppose θi = cr′i − č′′r′i . The black circle is original point ct in

C,t ∈ [0,n− 1]. The grey dashed dot is reconstructed point čt in Če
i . The green dot is reconstructed point č′t in Č′i.

The black dot is reconstructed point č′′t in Č′′i . cm=
cr′i

+č′′r′i
2 .

d3 +d4 =

li(li−1)+2(2li +1)
(li +1)(li +2)

|cr′i − čr′i |=

l2
i +3∗ li +1

(li +1)(li +2)
|cr′i − čr′i |=

(li +1)(li +2)
(li +1)(li +2)

|cr′i − čr′i |=

|cr′i − čr′i |=

= d5

(3.9)

Theorem 3.4.3 (In initialization part, upper bound is bigger than max deviation (βi ≥ θi) in general
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case). In figure 3.5, let cm denote middle point value between cr′i and č′′r′i . We can get cm=
cr′i

+č′′
r′i

2 .

Let d3 denote the point difference between cr′i and č′r′i . We can get d3 = cr′i − č′r′i . Let d4 denote

the point difference between č′r′i and čr′i . We can get d4 = č′r′i − čr′i . When d5 = cr′i − čr′i ≥ 0, three

factors support upper bound is bigger than max deviation : 1) dm = č′r′i − cm = č′r′i −
cr′i

+č′′
r′i

2 ≤ 0,

which means č′r′i is lower than the middle point of cr′i and č′′r′i ; 2) Section 3.4.1 proves l′′i = 3⇒

get max([1,2,3],C′i ,Č
′
i,Č

e
i ,) = θi. When the length of segment is three, upper bound is equal to max

deviation; 3) Section 3.4.1 shows βi
l′′i −1 ≥ d5. In Eq. (3.10), l′′i ∈ [3,n]. When d5 < 0, situation is

similar.

Proof. As Fig. 3.5 shows, Č
′′
i is an initialized segment. When θi = cr′i − č′′r′i , we will prove βi ≥ θi

in general cases. Since li ≥ 2, l′′i − 3 ≥ 0. When d5 = cr′i − čr′i ≥ 0, d3 = cr′i − č′r′i ≥ 0 in Theorem

3.4.2, we can prove

βi ≥ (l′′i −1)d3 ≥ θi⏞ ⏟⏟ ⏞
proo f this part

⇒

(l′′i −2)d3 + č′′r′i − č′r′i ≥ 0⇒
≥0⏟ ⏞⏞ ⏟

(l′′i −3)d3

2
≥ č′r′i −

cm⏟ ⏞⏞ ⏟
cr′i + č′′r′i

2
⇒

(l′′i −3)d5

2
≥ dm

(3.10)

We already know d5 > d3 in theorem 3.4.2. One special case l′′i = 4, (l′′i −3)d5
2 ≥ dm⇒ d5 ≥ θi

2 . If
βi
3 = d5 and d5 <

θi
2 , we will get βi < θi. Another special case is dm > 0, so (l′′i −3)d5

2 may be smaller

than dm, especially when βi
l′′i −1 = d5. During our experiment, we have not found these two special

cases that cause βi < θi. When d5 < 0, the proof is similar to Eq. (3.10). We will not discuss this in

details.

Reconstruction Area (ε(Č′i+1,Či +Či+1))

There are two adjacent segments ĉi and ĉi+1. Let C′i+1 denote the part of time series that cover Ci

and Ci+1 that is C′i+1 = {Ci, Ci+1}. It is easy to know r′i+1 = ri+1, l′i+1 = li + li+1 = r′i+1− ri−1.

We propose Eq. (3.11) and (3.12) that computation of a′i+1 and b′i+1 are O(1). We use Č
′
i+1 instead
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Figure 3.6: Example of Reconstruction Area ε(Č′i+1,Či +Či+1) simplified as four green triangles △. The black circle
is the original point ct in C. The grey dashed dot is the reconstructed point čt in Či +Či+1. The black dot is the

reconstructed point č′t in Č′i+1.

of Či, Či+1 in Ĉ is called merge operation. Č
′
i+1 and Či + Či+1 will form a reconstruction area

(ε(Č
′
i+1,Či +Či+1) in Definition 3.4.4).

Definition 3.4.4. Reconstruction Area (ε(Č′i+1,Či +Či+1)) ε(Č
′
i+1, Či +Či+1) is an area between

Či + Či+1 and Č
′
i+1. ε(Č

′
i+1,Či + Či+1) can be simplified as an area of several triangles or paral-

lelograms. Fig. 3.6 provides an example of ε(Č
′
i+1,Či + Či+1) as 4 green triangles in Fig. 3.6.
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a′i+1 =
li(li−1)(li +1)

l′i+1(l
′
i+1−1)(l′i+1 +1)

ai

+
12

l′i+1(l
′
i+1−1)(l′i+1 +1)

(︃
li−1

2
−

l′i+1−1
2

)︃
∗ sumi

+
li+1(li+1−1)(li+1 +1)
l′i+1(l

′
i+1−1)(l′i+1 +1)

ai+1

+
12

l′i+1(l
′
i+1−1)(l′i+1 +1)

[︃
li +

(︃
li+1−1

2
−

l′i+1−1
2

)︃]︃
∗ sumi+1

=
li(li−1)(li +1)

l′i+1(l
′
i+1−1)(l′i+1 +1)

ai−
6li+1

l′i+1(l
′
i+1−1)(l′i+1 +1)

∗ sumi

+
li+1(li+1−1)(li+1 +1)

l(l−1)(l +1)
ai+1 +

6li
l′i+1(l

′
i+1−1)(l′i+1 +1)

∗ sumi+1

=
aili(li−1)(li +1−3li+1)−6lili+1bi

l′i+1(l
′
i+1−1)(l′i+1 +1)

+
ai+1li+1(li+1−1)(li+1 +1+3li)+6lili+1bi+1

l′i+1(l
′
i+1−1)(l′i+1 +1)

=
ai ∗ li(li−1)(li +1−3li+1)

l′i+1(l
′
i+1−1)(l′i+1 +1)

+
ai+1 ∗ li+1(li+1−1)(li+1 +1+3li)

l′i+1(l
′
i+1−1)(l′i+1 +1)

+
(bi+1−bi)∗6lili+1

l′i+1(l
′
i+1−1)(l′i+1 +1)

+
ai+1li+1(li+1−1)(li+1 +1+3li)+6lili+1bi+1

l′i+1(l
′
i+1−1)(l′i+1 +1)

(3.11)

b′i+1 =
li(li +1)

l′i+1(l
′
i+1 +1)

bi +
2

l′i+1(l
′
i+1 +1)

[︁
2l′i+1−1− (2li−1)

]︁
∗ sumi

+
li+1(li+1 +1)
l′i+1(l

′
i+1 +1)

bi+1 +
2

l′i+1(l
′
i+1 +1)

[2l′i+1−1− (2li+1−1)−3li]∗ sumi+1

=
li(li +1)

l′i+1(l
′
i+1 +1)

bi +
4li+1

l′i+1(l
′
i+1 +1)

∗ sumi +
li+1(li+1 +1)
l′i+1(l

′
i+1 +1)

bi+1

− 2li
l′i+1(l

′
i+1 +1)

∗ sumi+1

=
li(li +1)∗bi

l′i+1(l
′
i+1 +1)

+
2li+1li(li−1)∗ai

l′i+1(l
′
i+1 +1)

+
li+1(li+1 +1)∗bi+1

l′i+1(l
′
i+1 +1)

− lili+1(li+1−1)∗ai+1

l′i+1(l
′
i+1 +1)

+
(4bi−2bi+1)∗ lili+1

l′i+1(l
′
i+1 +1)

=
bili(li +1)+2aili+1li(li−1)+4lili+1bi

l′i+1(l
′
i+1 +1)

+
bi+1li+1(li+1 +1)−ai+1lili+1(li+1−1)−2lili+1bi+1

l′i+1(l
′
i+1 +1)

(3.12)
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βi Segment Upper Bound in Merge Operation

A long segment Č
′
i+1 that is merged from Či, Či+1 by Eq. (3.11), (3.12). Let us denote Či +Či+1 as

one reconstructed time series. Thus Č
′
i+1 and Či+Či+1 have the same length. The upper bound in

merging operation is defined as β ′i+1 = get max([1,li, li+1, l′i+1], C′i+1, Č
′
i+1, Či+Či+1) * (l′i+1−1).

In other words, we choose the max absolute point differences from endpoints in {Ci, Ci+1, Či, Či+1,

Č
′
i+1}. There is a virtual illustration of Či, Či+1, Č

′
i+1 in Fig. 3.6.

3.4.2 Initialization

Initialization algorithm transfers C into initialized Ĉ (Ĉ.size ∈ [1, n
2 ]). SAPLA scans C once to find

the top N largest Increment Areas (refer to Definition 4.1) as Ĉ segment endpoints. Let ε(Č
′
j,Č

e
j)

denote an increment threshold. Let max(ε(Č
′
j,Č

e
j))N−1 denote the (N−1)th largest Increment Area.

In general cases, we could get at least N segments after initialization. When scanning a new point

cr′i , we will get increment area by Definition 3.4.1. We will compare this increment area with the

increment threshold. If the current increment area is bigger than the increment threshold, we will

get a new threshold and a new segment. After initialization, SAPLA uses split & merge iteration in

Section 3.4.3 to get exact N segments representation.

Algorithm 3.4.2 shows the process of initialization aiming to find segment endpoints by ε(Č
′
i,Č

e
i ).

Computation of ε(Č
′
i,Č

e
i ) needs a′i,b

′
i. Because of Eq. (3.2) and Eq. (3.3), Algorithm 3.4.2 scans C

once to get a′i, b′i (i ∈ [0,n)). If ε(Č
′
i,Č

e
i ) > max(ε(Č

′
j,Č

e
j))N−1 (i > j), ĉ′i will be added to Ĉ.

⟨(Č′i+1,Či+Či+1), ĉi+1⟩ is stored in map ωm from min to max. ⟨βi, ĉi⟩ is stored in map ωs from max

to min.

3.4.3 Split & Merge Iteration

ĉi and ĉi+1 with minĈ.size−2
i=0 ε(Č

′
i+1,Či + Či+1) are regarded as candidate merge segments. After

initialization, C is represented by initialized Ĉ. Merge and split operations are applied to Ĉ for

sum upper bound (β ) reduction. βi is proposed to bound maximum deviation (εi in Definition

2.1.5) with O(1) time complexity. maxĈ.size−1
i=0 βi is regarded as a split threshold and β is re-

garded as an iteration threshold. Because a merge operation involves adjacent segments ĉi and

ĉi+1, minĈ.size−2
i=0 ε(Č

′
i+1,Či +Či+1) is proposed as a merge threshold.

Merge operations cannot guarantee a small max deviation. Therefore, we further apply split

operations. The splitting operation could be regarded as a reverse operation of the merging operation
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Algorithm 3.4.2: Initialization
input : C : {c0,c1, . . . ,cn−1};N;
output: Initialized Ĉ, Ĉ.size ∈ [1, n

2 ];
ωm: Map storing ĉi+1 by ε(Č

′
i+1,Či +Či+1) from min to max;

ωm.top := ⟨minĈ.size−2
i=0 ε(Č

′
i+1,Či +Či+1), ĉi+1⟩;

ωs: Map storing ĉi by βi from max to min;
ωs.top := ⟨maxĈ.size−1

j=0 β j, ĉ j⟩;
η : priority queue. store ε(Č

′
i,Č

e
i );// η .size ∈ [0,N);

η .top := min ε(Č
′
i,Č

e
i ) in η ;

1 ĉi := ⟨ai,bi,ri⟩ ← ⟨c1− c0,c0,1⟩, li← 2, i← 0;
2 while ri < n do
3 Compute ĉ′i and ε(Č

′
i,Č

e
i ) from ĉi by Eq (3.2), Eq (3.3) and Definition 3.4.1;

4 Compute βi by Section 3.4.1;
5 if η .size < N−1 then
6 η .push(ε(Č

′
i,Č

e
i ));

7 Ĉ.insert(ĉi);
8 ωs.add⟨βi, ĉi⟩;
9 if i > 0 then

10 Compute ε(Č
′
i,Či−1 +Či) by Eq. (3.11)(3.12) and Definition 3.4.4;

11 Compute β ′i by Section 3.4.1;
12 ωm.add⟨ε(Č′i,Či−1 +Či), ĉi⟩;
13 i++, ri+= 2, li← 2;

14 else if ε(Č
′
i,Č

e
i )> η .top then

15 Update η by ε(Č
′
i,Č

e
i );

16 Ĉ.insert(ĉi);
17 ωs.add⟨βi, ĉi⟩;
18 ωm.add⟨ε(Č′i,Či−1 +Či), ĉi⟩;
19 i++, ri+= 2, li← 2;

20 else
21 ĉi← ĉ′i; // r′i = ri +1, l′i = li +1
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in Section 3.4.1. In other words, we already have one long segment denoted as Č
′
i+1. We use

two short segments Či + Či+1 to instead Č
′
i+1. It is easy to know l′i+1 = li + li+1 and r′i+1 = ri+1.

SAPLA proposes maxĈ.size−1
i=0 βi as the segment split threshold. SAPLA applies the peak finding

technique [17] to find the split point in ĉi with maxĈ.size−1
i=0 βi. After initialization, we have got βi by

Section 3.4.1. In split & merge iteration, we keep updating βi in merge operation by Section 3.4.1

and in split operation by Section 3.4.3.

βi Segment Upper Bound in Splitting Operation

The upper bound in the splitting operation could be regarded as the reverse operation of upper bound

computation in merging operation. Thus, it is easy to get βi =get max([1,li], Ci, Č
′
i+1, Či) * (li−1),

βi+1 = get max([1,li+1], Ci+1, Č
′
i+1, Či+1) * (li+1− 1). Note that, the order in segment for Č

′
i+1

should be transformed as [1− li, . . . , l′i+1− li]; Thus, Ci+1, Či+1 and Č
′
i+1 will have the same order

value.

In merging operation, upper bound β ′i+1 is defined in Section 3.4.1, and Fig. 3.6 shows an

example of merging operation when Či and Či+1 are merged into Č
′
i+1. In spitting operation, upper

bound βi is defined in Section 3.4.3 and Fig. 3.6 also be regarded as an example of a split operation

where Č
′
i+1 is split into Či and Či+1. Theorem 3.4.5 provides the conditions that make βi ≥ θi.

Lemma 3.4.2. Let Ci denote the ith segment of original time series C. Let Či denote the ith segment

of reconstructed time series Č from SAPLA representation Ĉ. Let sp = { ∑
ri
j=ri−1+1(c j− č j), i f c j−

č j > 0} and sn = {∑ri
j=ri−1+1(c j− č j), i f c j− č j < 0}. sp + sn = 0, like Eq. (3.13) shows,

ri

∑
j=ri−1+1

(c j− č j)

=
ri

∑
j=ri−1+1

[c j− (ai ∗ ( j− ri−1−1)+bi)]

=
ri

∑
j=ri−1+1

c j− (
li(li−1)

2
ai + libi)

=
ri

∑
j=ri−1+1

c j−
6
[︂
∑

li−1
t=1 (t ∗ cri−1+1+t)− li−1

2 ∗∑
ri
j=ri−1+1(c j)

]︂
li +1

−
2
[︂
(2li−1)∑

ri
j=ri−1+1(c j)−3∑

li−1
t=1 (t ∗ cri−1+1+t)

]︂
li +1

= 0

(3.13)
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Theorem 3.4.5. In merging operation, suppose segment max deviation is θ ′i+1 = |ct− čt |, t ∈ [ri−1+

1,r′i+1]. Excludes max deviation, the sum value of absolute point difference is {s = ∑
r′i+1
j=ri−1+1 |c j−

č j|, j ̸= t}. θ ′i+1 ≤ s because sumi = ∑
r′i+1
j=ri−1+1(c j− č j) = 0 as Eq. (3.13) shows. Average point

difference is s
l′i+1−1 . So, if get max([1,li, li+1, l′i+1], C′i+1, Č

′
i+1, Či+Či+1)≥ s

l′i+1−1 , we will get βi+1

≥ θ ′i+1. In spitting operation, βi ≥ θi has same situation.

Proof. βi+1 = get max([1,li, li + 1, l′i+1], C′i+1, Č
′
i+1, Či + Či+1) ∗(l′i+1− 1). We suppose θ ′i+1 =

cri − č′ri
in Fig. 3.6. According to Lemma 3.4.2, θ ′i+1 also has maximum value. That is when only

cri is located above Či, other points are all below Či and average value is
cri−č′ri
l′i+1−1 . So, the worst case

is max d′i+1 <
cri−č′ri
l′i+1−1 . During our experiment, we have not found this extreme case. For proof βi in

split operation is similar with βi+1. We will not discuss in detail.

Finding Split Point in Č
′
i+1

SAPLA regards ĉ′i+1 with maxĈ.size−2
i=−1 β ′i+1 as candidate split segment. Split point is regarded as ri

in ĉi. SAPLA finds ri with nearly maximum ε(Č
′
i+1,Či +Či+1) by peak finding technique [17]. Eq.

(3.14) and (3.15) help compute ai and bi in ĉi by a′i+1, b′i+1 and ai+1, bi+1. Eq. (3.16) and (3.17)

help compute ai+1 and bi+1 in ĉi+1 in the same way. Fig. 3.7 provides an example of finding split

point in Č
′
i+1.

ai = a′i+1 ∗
l′i+1 ∗ (l′2i+1−1)

li ∗ (li2−1)
+

6∗ li+1 ∗ sumi

li(li2−1)

−6∗ sumi+1

li2−1
− li+1 ∗ (li+1

2−1)
li ∗ (li2−1)

∗ai+1

= a′i+1
l′i+1(l

′
i+1

2−1)

li(li2−1)
+

3li+1ai

li +1
− 3li+1(li+1−1)ai+1

li2−1

+
6li+1(bi−bi+1)

li2−1
− li+1(li+1

2−1)
li(li2−1)

ai+1

= a′i+1 ∗
l′i+1(l

′
i+1−1)(l′i+1 +1+3li+1)

li(li2−1)
−

ai+1 ∗
li+1(li+1−1)(3li +4li+1 +1)

li(li2−1)

+
6li+1[b′i+1l′i+1−bi+1(li + li+1)]

li(li2−1)

(3.14)

R.Xue, PhD Thesis, Aston University 2021 90



CHAPTER 3. SAPLA

Figure 3.7: An example of finding a split point in Č′i+1. is the middle point of Ci. is the candidate split point in step
1), it is the middle point between endpoint and . 1) SAPLA gets split point with local max ε(Č′i+1,Či +Či+1) and
max magnitude (1). 2) SAPLA will check other candidate points until has bigger ε(Č′i+1,Či +Či+1) or all magnitudes
of candidate split points are equal to magnitude.
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bi = b′i+1 ∗
l′i+1 ∗ (l′i+1 +1)

li ∗ (li +1)
+

2∗ sumi+1

li +1

−4∗ li+1 ∗ sumi

li(li +1)
− li+1 ∗ (li+1 +1)

li ∗ (li +1)
∗bi+1

= b′i+1
l′i+1(l

′
i+1 +1)

li(li +1)
+

li+1(li+1−1)ai+1

li +1

−2li(li−1)ai

li +1
+

2li+1(bi+1−2bi)

li +1
− li+1(li+1 +1)

li(li +1)
bi+1

= b′i+1 ∗
l′i+1(l

′
i+1 +1−4li+1)

li(li +1)
+bi+1li+1 ∗

2l′i+1 + li+1−1
li(li +1)

+ai+1 ∗
(l′i+1 + li+1)li+1(li+1−1)

li(li +1)
−a′i+1 ∗

2li+1l′i+1(l
′
i+1−1)

li(li +1)

(3.15)

ai+1 = a′i+1 ∗
l′i+1 ∗ (l′2i+1−1)

li+1 ∗ (li+1
2−1)

+
6∗ sumi

li+1
2−1

− 6∗ li ∗ sumi+1

li+1 ∗ (li+1
2−1)

− li ∗ (li2−1)
li+1 ∗ (l2

i+1−1)
∗ai

= a′i+1
l′i+1(l

′
i+1−1)(l′i+1 +1−3li)

li+1(li+1
2−1)

+

ai
li(li−1)(2l′i+1 + li+1−1)

li+1(li+1
2−1)

+
6lil′i+1(bi−b′i+1)

li+1(li+1
2−1)

(3.16)

bi+1 = b′i+1 ∗
l′i+1 ∗ (l′i+1 +1)
li+1 ∗ (li+1 +1)

+
2∗ li ∗ sumi+1

li+1 ∗ (li+1 +1)

−4∗ sumi

li+1 +1
− li ∗ (li +1)

li+1 ∗ (li+1 +1)
∗bi

= a′i+1
lil′i+1(l

′
i+1−1)

li+1(li+1 +1)
+b′i+1

l′i+1(l
′
i+1 +1+2li)

li+1(li+1 +1)

−
aili(li−1)(l′i+1 + li+1)

li+1(li+1 +1)
−

bili(3l′i+1 + li+1 +1)
li+1(li+1 +1)

(3.17)

Algorithm 3.4.3 shows how split & merge iteration works. We have got ωm.top and ωs.top in

Algorithm 3.4.2. When Ĉ.size > N, SAPLA applies merge operation for ωm.top to reduce Ĉ.size.

Eq. (3.11), (3.12) help to reduce computation time.

When Ĉ.size < N, SAPLA applies split operation for ωs.top to increase Ĉ.size. Eq. (3.14),

(3.15), (3.16), (3.17) help to reduce computation time.

When Ĉ.size=N, SAPLA computes β j, β j+1 from ωs.top and βi+1 from min{ωm.top, ε(Č
′
j,Č j−1+
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Č j), ε(Č
′
j+2,Č j+1 +Č j+2)}. Thus, we will get β sm from the above split-merge computation. Then

SAPLA computes βy+1 from ωm.top and βt , βt+1 from ωs.top. We will get β ms from the above

merge-split computation. Finally, if β ≤ min{β ms, β sm}, iteration will be transferred to segment

endpoint movement iteration. If β > min{β ms, β sm}, {β , Ĉ, ωs, ωm} will be updated by the above

computation and Algorithm 3.4.3 will continue iteration.

Algorithm 3.4.3: Split & Merge Iteration

input : C : {c0,c1, . . . ,cn−1}; Ĉ, ωm, ωs from Algorithm 3.4.2;
output: Ĉ = {ĉ0, ĉ1, . . . , ĉN−1} with reduced β ;

1 while Ĉ.size > N do
2 ĉ′i+1 := ωm.top; Update Ĉ by ĉ′i+1, ωs by βi+1, ωm by ε(Č

′
i+1,Či +Či+1); //Eq. (3.11)

(3.12), Section 3.4.1; Definition 3.4.4.
3 while Ĉ.size < N do
4 ĉ′j+1 := ωs.top; Update Ĉ by ĉ j, ĉ j+1; ωs by β j, β j+1; ωm by

ε(Č
′
j+1,Č j +Č j+1);//Section 3.4.3; Section 3.4.3.

5 β sm← β ms← 0;// all segment are labeled un-splitted and un-merged
6 while β ≥min{β sm,β ms} do
7 if ωs.top has been split then get next segment.
8 if ωm.top has been merged then get next segment.
9 Compute β j, β j+1, ĉ j, ĉ j+1 from ωs.top;

10 Compute βi+1, ĉ′i+1 from min{ωm.top, ε(Č
′
j,Č j−1 +Č j), ε(Č

′
j+2,Č j+1 +Č j+2)}; //

O(1).
11 Compute βy+1, ĉ′y+1 from ωm.top;//O(1)
12 Compute βt , βt+1, ĉt , ĉt+1 from ωs.top;
13 Compute β sm by {β , β j, β j+1, βi+1};
14 Compute β ms by {β , βt , βt+1, βy+1};
15 if β sm < β or β ms < β then
16 if β sm < β ms then Update Ĉ by ĉ j, ĉ j+1, ĉ′i+1;
17 else Update Ĉ by ĉt , ĉt+1, ĉ′y+1;
18 //label split or merged
19 Update ωs, ωm;β ←min{β sm,β ms};

3.4.4 Segment Endpoint Movement Iteration

In the segment endpoint movement iteration, SAPLA moves left and right endpoints of Či with

maxN−1
i=0 βi for β reduction. Fig. 3.8 provides an example of Či endpoints movement. There are 4

cases: 1) Či increases right endpoints. 2) Či decreases right endpoints. 3) Či increases left endpoints.

4) Či decreases left endpoints. SAPLA computes updated β of each movement and chooses minimal

β as final movement.
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Figure 3.8: Example of segment endpoint movement for Či. Či tries to move endpoints for β reduction. There are four
cases. The grey dot is the endpoint in Či−1, Či+1. The black dot is the endpoint in Či.
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βi Segment Upper Bound in Endpoint Movement

One case is that Či increases right endpoint, we could get βi by Section 3.4.1. Because βi computa-

tion for decreasing right endpoint, increasing left endpoint and decreasing left endpoint are similar

with βi computation in Section 3.4.1. We will not discuss the other 3 cases in detail. Eq. (3.2), Eq.

(3.3), (3.18), (3.19), (3.20), (3.21), (3.22), (3.23) help to reduce computation time.

Algorithm 3.4.4 shows how segment endpoint movement iteration works. Či with maxN−1
i=0 βi

increases and decreases its left and right endpoints during iteration. Thus, we will get 4 updated c,

which are called β a, β b, β c, β d by βi. Algorithm 3.4.5 shows how to compute ĉ′i,ĉ
′
i+1, βi, βi+1 and

updated β .

1) β a is from {βi, βi+1} when Či increases right endpoints and Či+1 decreases left endpoints. 2)

β b is from {βi, βi+1} when Či decreases right endpoints and Či+1 increases left endpoints. 3) β c is

from {βi−1, βi} when Či increases left endpoints and Či−1 decreases right endpoints. 4) β d is from

{βi−1, βi} when Či decreases left endpoints and Či−1 increases right endpoints. Each movement

will continue until β cannot be reduced. SAPLA pops out computed ĉi and repeats above process

for β reduction.

Algorithm 3.4.4: Segment Endpoint Movement Iteration

input : C; After split & merge iteration Ĉ;
output: Ĉ = {ĉ0, ĉ1, . . . , ĉN−1} with reduced β ;

1 η := priority queue; η .top := ĉi with maxN−1
i=0 βi;

2 β a← β b← β c← β d ← β ;
3 while β ≥min{β a,β b,β c,β d} and η! = /0 do
4 β a← increase right(β , ĉi,ĉi+1); //Algorithm 3.4.5
5 β b← decrease right(β , ĉi,ĉi+1); /Algorithm 3.4.6
6 β c← decrease right(β , ĉi−1,ĉi);
7 β d ← increase right(β , ĉi−1,ĉi);
8 if β > min{β a,β b,β c,β d} then
9 if min(β a,β b)< min(β c,β d) then

10 ĉi← ĉ′i; ĉi+1← ĉ′i+1;

11 else ĉi−1← ĉ′i−1; ĉi← ĉ′i;
12 β ←min{β a,β b,β c,β d}; η .pop;
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Algorithm 3.4.5: Coefficients for Endpoint Movement
Input: β , ĉi, ĉi+1
Output: Updated β

1 β ′← β ;
2 Function increase right(β , ĉi, ĉi+1):
3 while β ′ ≤ β and l′i+1 ≥ 2 do
4 β ← β ′;
5 r′i← ri +1;
6 Computes ĉ′i by Eq. (3.2),Eq. (3.3)
7 Computes ĉ′i+1 by Eq. (3.22) and Eq. (3.23);//O(1)
8 Computes βi, βi+1 by Section 3.4.4;//O(1)
9 Updates β ′ by βi, βi+1

10 return β

Algorithm 3.4.6: Coefficients for Endpoint Movement
Input: β , ĉi, ĉi+1
Output: Updated β

1 β ′← β ;
2 Function decrease right(β , ĉi, ĉi+1):
3 while β ′ ≤ β and l′i ≥ 2 do
4 β ← β ′;
5 r′i← ri−1;
6 Computes ĉ′i by Eq. (3.18), Eq. (3.19);
7 Computes ĉ′i+1 by Eq. (3.20) and Eq. (3.21) ;//O(1)
8 Computes βi, βi+1 by Section 3.4.4;//O(1)
9 Updates β ′ by βi, βi+1

10 return β
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a′i =
li +1
l′i−1

ai +
6sumi

lil′i(l
′
i −1)

+
6licri

lil′i(l
′
i−1)

=
li +1
l′i−1

ai +
3(li−1)
l′i(l
′
i−1)

ai +
6(bi− cri)

l′i(l
′
i−1)

=
l′i(li +1)ai +3(li−1)

l′i(l
′
i−1)

ai +
6(bi− cri)

l′i(l
′
i−1)

=
(li +4)ai

li−2
+

6(bi− cri)

(li−1)(li−2)

(3.18)

b′i =
bi(li +1)

l′i

−4(sumi− cri)+2(1− l′i)cri

lil′i

=
bi(li +1)−4bi

l′i
−2ai +

2cri

l′i

=
(li−3)bi

li−1
−2ai +

2cri

li−1

(3.19)

a′i =
ai ∗ (li−1)

li +2
+

6∗ sumi

l′i(li +1)(li +2)

=
ai ∗ (li−1)

li +2
+

6∗ (ai ∗ li−1
2 +bi− cri−1)

(li +1)(li +2)

=
ai(li−1)(li +4)+6(bi− cri−1)

(li +1)(li +2)

(3.20)

b′i =
2(2li +1)cri−1 + li(li−1)(bi−ai)

(li +1)(li +2)
(3.21)

a′i = ai +
6(cri−1+1−bi)

(li−1)(li−2)
(3.22)

b′i = ai +
(li +3)bi−4cri−1+1

li−1
(3.23)
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3.4.5 Time Complexity Analysis.

One advantage of SAPLA is that it can adjust iteration times by iteration threshold β . The worst time

complexity is O(N(n−2N)+2n logn) = O(n(N + logn)). O(n(N + logn)) is the worst case of the

split & merge iteration. We think the initialization helps to avoid the worst case. Our experiment [1]

shows SAPLA is much faster than APLA, CHEBY . SAPLA is faster than APCA for some datasets.

For the initialization part, the worst time complexity is O(n logN). The worst case is when ĉ is

constructed (l = 2), SAPLA will apply Ĉ.insert(ĉ) and update max(ε(Č
′
,Č

e
))N−1. max(ε(Č

′
,Č

e
))N−1

will be updated n
2 times and cost O(logN) during each update.

For the split & merge iteration part, when Ĉ.size > N, the worst case is Ĉ.size = n
2 . After merge

operation, sorts min
n
2−2
i=0 (ε(Č

′
i+1,Či + Či+1)), max

n
2−1
j=0 β j costs O(2log n

2) and Ĉ.size minus one.

There are n
2 −N merge times. So, for merge loop, the worst time complexity is O(∑

n
2−N
i=0 2log(n

2 −

i)) = O(∑
n
2
i=N log i)→ O(n logn).

When Ĉ.size < N, the worst time complexity is O(Nn). In split operation, the worst time com-

plexity of finding split point is O(n− 2Ĉ.size). After split operation, we need to sort βi from big

to small and reconstruction area (Definition 3.4.4) from small to big. Thus, the time complexity

for sorting operation is O(2logĈ.size). The worst case in split operation is when Ĉ.size = 1, we

need N− 1 loop times to get N segments. So, the time complexity is O(n(N− 1)−N(N + 1)+

2∑
N
i=1 log i) = O(Nn).

When Ĉ.size = N and new β < old β , we need to sort maxN−1
j=−1 β ′j+1 and minN−1

i=0 (ε(Č
′
i+1, Či +

Či+1)), their time complexity is O(2logN). So, the time complexity in each while loop is O(n−

2N+2logN). In each while loop, each segment has 1
N probability to be split except candidate merge

segments and candidate split segment are same. For example, after split operation, ε(Č
′
j+1,Č j +

Č j+1) is smaller than minN−1
i=0 (ε(Č

′
i+1,Či + Či+1)), loop will stop. We do not apply split operation

and merge operation on same segment in each while loop. When one segment is split, we will

not split it again because we want to leave the split chance to other segments. We do the same

strategy on merge operation. Thus, the while loop times are ∈ [1,N], and the worst time complexity

is O(N(n−2N)+2N log(N)) = O(Nn). The whole time complexity is O(n(N + logn)).

For segment endpoint movements, the worst time complexity is O(N(n− 2N)) = O(Nn). For

the worst case, candidate ĉi with maxN−1
i=0 βi has li = n− 2N. Because each Či has the longest

li = n−2N movements, which means Či is reduced to li = 2. Then Či+1 moves n−2N and so on.

So, time complexity is O(N(n−2N)). For segment endpoint movements, the worst case is each Či
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has the longest li = n−2N movements, thus time complexity is O(N(n−2N)) = O(Nn).

3.5 Experimental Evaluation

This section introduces the experimental evaluation using max deviation (θ ) and dimensionality

reduction time. We have implemented SAPLA, APLA, APCA, PLA, PAA, CHEBY , PAALM, SAX ,

R-tree, DBCH-tree by C++ [1]. Their summaries are shown in Table 2.1. The processor is Intel(R)

Core(TM) i5-7600 CPU @ 3.50 GHz. RAM is 8 GB. We evaluated datasets by VS2019 in Windows

10 system. We randomly evaluated five query time series and summarized the results.

We evaluated all homogeneous datasets in [18] that the time series length is bigger than 1024

(20 datasets) in Table 3.1. The parameter is {12≤M ≤ 24,M+= 6}, {2≤ K ≤ 64,K∗= 2}. Due

to the space limitation, the comparisons of each parameter in all datasets are shown in our technical

report [1].

3.5.1 Datasets in this thesis

In this section, we discuss the real datasets that are evaluated in our thesis. We use UCRArchive2018

[18] datasets, which were released in Fall 2018. UCRArchive2018 [18] claims that thousands of

people have downloaded the UCR archive, and the UCR archive has been referenced above hundreds

of times.

Each dataset has two parts, a TRAIN part and a TEST part. For example, the HandOutlines

dataset has HandOutlines T EST.tsv and HandOutlines T RAIN.tsv. These files have different

sizes. T RAIN file usually has more size than T EST . Because these files use ASCII format, we

read datasets by C++ language. We use i f stream class to perform input / output operations.

Time series is a sequence taken at successive equally spaced points in time. Time series are

regarded as a high dimensional data type. Each row has one time series. The first column is a class

label, and we do not use this label in this thesis. The rest of the columns are time series values. We

skip the first column when reading original time series.

In order to evaluate time series dimensionality reduction methods, we select datasets with the

time series is longer than 1024. These datasets are shown in Table 3.1. The first column is the order

of datasets in this thesis. The second column is the name of each dataset. The third column is an

abbreviation of the dataset name. The fourth column is the type of each dataset.
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Order Name Abbreviations Type
1 HandOutlines (HO) Image
2 HouseTwenty (HT ) Device
3 PigAirwayPressure (PAP) Hemodynamics
4 PigArtPressure (PAPS) Hemodynamics
5 PigCV P (CV P) Hemodynamics
6 InlineSkate (IS) Motion
7 EthanolLevel (EL) Spectro
8 CinCECGTorso (CT ) Sensor
9 SemgHandGenderCh2 (SHG) Spectrum
10 SemgHandMovementCh2 (SHM) Spectrum
11 SemgHandSub jectCh2 (SHS) Spectrum
12 ACSF1 (ACS) Device
13 EOGHorizontalSignal (EHS) EOG
14 EOGverticalSignal (EV S) EOG
15 Haptics (H) Motion
16 Mallat (M) Simulated
17 Phoneme (PM) Sensor
18 StarLightCurves (SLC) Sensor
19 MixedShapesRegularTrain (MSR) Image
20 MixedShapesSmallTrain (MST ) Image

Table 3.1: 20 Homogeneous Datasets [18]

Example of Single Dataset

The reason for evaluating up to twenty datasets is that the time series in each dataset has a big

difference. Figure 3.9 shows the visual comparison of one original time series in the first ten homo-

geneous datasets. Figure 3.10 shows the visual comparison of one original time series in the last ten

homogeneous datasets. Each sub-figure shows one original time series. There are one hundred time

series in each dataset.

Before reducing original time series, we use z-score normalization to avoid outlier issues. An

original time series C = {c0, c1, . . ., cn−1}, where n is time series length. ct , t ∈ [0, n− 1] is the

time series point value. Let µ denote the average value of the original time series. Eq. 3.24 shows

how to compute the average value of original time series C. Let σ denote standard deviation. Eq.

3.25 shows how to compute the standard deviation of original time series C. Eq. 3.26 shows how to

compute the z-score value of original time series C.

µ =
∑

n−1
t=0 ct

n
(3.24)
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One original time series

(a) 1 HandOutlines (HO)

One original time series

(b) 2 HouseTwenty (HT )

One original time series

(c) 3 PigAirwayPressure (PAP)

One original time series

(d) 4 PigArtPressure (PAPS)

One original time series

(e) 5 PigCV P (CV P)

One original time series

(f) 6 InlineSkate (IS)
One original time series

(g) 7 EthanolLevel (EL)

One original time series

(h) 8 CinCECGTorso (CT )
One original time series

(i) 9 SemgHandGenderCh2 (SHG)

One original time series

(j) 10 SemgHandMovementCh2 (SHM)

Figure 3.9: Visual comparison of the original time series in the first ten homogeneous datasets. Each sub-figure shows
one original time series. The black dot is one point in original time series.
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One original time series

(a) 11 SemgHandSub jectCh2 (SHS)

One original time series

(b) 12 ACSF1 (ACS)
One original time series

(c) 13 EOGHorizontalSignal (EHS)

One original time series

(d) 14 EOGVerticalSignal (EV S)
One original time series

(e) 15 Haptics (H)

One original time series

(f) 16 Mallat(M)
One original time series

(g) 17 Phoneme (PM)

One original time series

(h) 18 StarLightCurves (SLC)

One original time series

(i) 19 MixedShapesRegularTrain (MSR)

One original time series

(j) 20 MixedShapesSmallTrain (MST )

Figure 3.10: Visual comparison of the original time series in the last ten homogeneous datasets. Each sub-figure shows
one original time series. The black dot is one point in original time series.
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σ =

√︄
∑

n−1
t=0 (ct −µ)2

n
(3.25)

cz
t =

ct −µ

σ
(3.26)

3.5.2 Comparison on Max Deviation (θ )

Max deviation is used to evaluate the tightness between the original time series and the reconstructed

time series from representation coefficients. Table 3.2 shows the max deviation comparison of seven

dimensionality reduction methods. The baseline dimensionality reduction method is APLA. APLA

uses the dynamic programming to get optimal APLA representation. The max deviation of each

dimensionality reduction method divides the APLA max deviation for each dataset. When the value

in Table 3.2 is smaller than one, this dimensionality reduction method is better than APLA. Oth-

erwise, it is worse than APLA. We could find SAPLA is better than APLA in five datasets, they

are HandOutlines, Mallat, Phoneme, MixedShapesRegularTrain and MixedShapesSmallTrain.

APCA is better than APLA in three datasets, they are SemgHandGenderCh2, SemgHandSub jectCh2,

ACSF1. Because PAALM [61] does not consider max deviation, it has the biggest max deviation.

However, the pruning power comparison in later sections will show the importance of small max

deviation. The experiment result of PAALM indicates small max deviation is important in k-NN

search. Table 3.3 shows the ranks comparison of each dimensionality reduction method in each

dataset. The bottom is the average rank of each dimensionality reduction method. For example, the

SAPLA ranks one in HandOutlines dataset, which means SAPLA has the best max deviation in this

dataset. We could find APLA ranks one in eleven datasets. The average ranks of these dimension-

ality reduction methods are APLA (1.45), SAPLA (1.95), PLA (3.35), APCA (3.6), CHEBY (4.9),

PAALM (6.95).

Figure 3.11 shows the scatter plot of our proposed dimensionality reduction method SAPLA

and baseline dimensionality reduction method APLA. We could find that the most black points fall

near the red colour diagonal line. There are four datasets Phoneme, ACSF1, PigArtPressure and

HouseTwenty, which are far away from the red colour diagonal line. Figure 3.12 is a critical dif-

ference diagram for max deviation. The best ranks are to the left. The methods on the left side are

better than the right side methods. Because we need to compare multiple dimensionality reduction

methods in multiple datasets and compare our proposed dimensionality reduction method SAPLA
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with other dimensionality reduction methods, the post-hoc analysis is Bonferroni-Dunn Tests. The

predefined threshold value α is 0.05. The number of datasets is twenty. The average Rank is

SAPLA : 1.95, APLA : 1.45, APCA : 3.60, PLA : 3.35, PAA : 5.80, CHEBY : 4.90, PAALM : 6.95.

The critical difference value is 1.802097074. The null-hypothesis is that all dimensionality reduc-

tion methods perform equally well and the performance differences are random. If the difference

of average ranks between two dimensionality reduction methods is smaller than the critical differ-

ence value, their performance difference is not significant (horizontal line). We could find three

adaptive-length dimensionality reduction methods SAPLA, APLA, APCA and one equal-length di-

mensionality reduction method PLA are not significantly different. We use the Wilcoxon signed

ranks test for comparison of paired dimensionality reduction methods between our proposed di-

mensionality reduction method SAPLA and other dimensionality reduction methods. The Wilcoxon

signed ranks test is a non-parametric statistical hypothesis test. We do not use the t-test because

the maximum deviation differences of paired dimensionality reduction methods are not normal dis-

tributions. The null-hypothesis is that the paired reduction methods perform equally well, and the

performance differences are random. We define the predefined threshold value α as 0.05. The p-

values of Wilcoxon signed ranks test are (SAPLA vs APLA: p = 1.923370×10−2 < 0.05), (SAPLA

vs APCA: p = 1.923370×10−2 < 0.05), (SAPLA vs PLA: p = 1.907349×10−6 < 0.05), (SAPLA

vs PAA: p = 1.907349×10−6 < 0.05), (SAPLA vs CHEBY : p = 1.907349×10−6 < 0.05), (SAPLA

vs PAALM: p = 1.907349×10−6 < 0.05). we would reject the null hypothesis.

We can conclude that under the threshold 0.05, the adaptive-length segment dimensionality

reduction method APLA has better max deviation than our proposed adaptive-length segment di-

mensionality reduction method SAPLA. SAPLA has better max deviation than one adaptive-length

segment dimensionality reduction method APCA and one equal-length segment dimensionality re-

duction method PLA. The max deviation of our proposed adaptive-length segment dimensionality

reduction method SAPLA is much better than three equal-length segment dimensionality reduction

methods CHEBY , PAA and PAALM.

3.5.3 Comparison on Dimensionality Reduction Time

Equal-length segment dimensionality reduction methods are much faster than adaptive-length seg-

ment dimensionality reduction methods because they do not need to consider the length of each

segment. However, analysis of other experiment parameters indicates adaptive-length segment di-

mensionality reduction methods could use fewer segments to get better max deviation and pruning
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SAPLA APLA APCA PLA PAA Chebyshev PAALM
HandOutlines 0.77 1.00 6.32 1.76 7.68 1.85 34.49
HouseTwenty 1.46 1.00 2.45 2.10 3.07 3.44 3.89
PigAirwayPressure 1.07 1.00 2.06 1.64 3.52 2.88 8.46
PigArtPressure 1.28 1.00 1.42 1.43 2.50 2.12 2.94
PigCVP 1.04 1.00 1.39 1.51 2.62 2.43 3.37
InlineSkate 1.12 1.00 3.12 1.48 4.02 1.51 11.34
EthanolLevel 1.01 1.00 3.32 1.45 3.76 1.56 23.70
CinCECGTorso 1.09 1.00 2.38 1.80 2.83 3.59 3.98
SemgHandGenderCh2 1.08 1.00 0.98 1.80 2.88 2.85 3.03
SemgHandMovementCh2 1.12 1.00 1.00 1.69 2.70 2.67 2.89
SemgHandSubjectCh2 1.15 1.00 0.95 2.00 3.16 3.13 3.28
ACSF1 1.25 1.00 0.58 2.02 3.68 3.79 3.69
EOGHorizontalSignal 1.25 1.00 2.23 1.44 2.68 2.65 8.27
EOGVerticalSignal 1.41 1.00 2.19 1.64 2.76 2.96 6.84
Haptics 1.10 1.00 1.81 1.40 2.63 1.46 5.65
Mallat 0.99 1.00 1.59 1.25 2.24 1.82 3.47
Phoneme 0.95 1.00 1.13 1.39 2.48 2.48 2.55
StarLightCurves 1.01 1.00 2.84 1.52 3.56 2.30 10.38
MixedShapesRegularTrain 0.87 1.00 1.78 1.22 2.64 1.53 4.75
MixedShapesSmallTrain 0.87 1.00 1.78 1.22 2.64 1.53 4.75

MaxDeviation

Table 3.2: Max deviation comparison on 20 homogeneous datasets. The baseline dimensionality reduction method is
APLA.
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SAPLA APLA APCA PLA PAA CHEBY PAALM
HandOutlines 1.0 2.0 5.0 3.0 6.0 4.0 7.0
HouseTwenty 2.0 1.0 4.0 3.0 5.0 6.0 7.0
PigAirwayPressure 2.0 1.0 4.0 3.0 6.0 5.0 7.0
PigArtPressure 2.0 1.0 3.0 4.0 6.0 5.0 7.0
PigCVP 2.0 1.0 3.0 4.0 6.0 5.0 7.0
InlineSkate 2.0 1.0 5.0 3.0 6.0 4.0 7.0
EthanolLevel 2.0 1.0 5.0 3.0 6.0 4.0 7.0
CinCECGTorso 2.0 1.0 4.0 3.0 5.0 6.0 7.0
SemgHandGenderCh2 3.0 2.0 1.0 4.0 6.0 5.0 7.0
SemgHandMovementCh2 3.0 2.0 1.0 4.0 6.0 5.0 7.0
SemgHandSubjectCh2 3.0 2.0 1.0 4.0 6.0 5.0 7.0
ACSF1 3.0 2.0 1.0 4.0 5.0 7.0 6.0
EOGHorizontalSignal 2.0 1.0 4.0 3.0 6.0 5.0 7.0
EOGVerticalSignal 2.0 1.0 4.0 3.0 5.0 6.0 7.0
Haptics 2.0 1.0 5.0 3.0 6.0 4.0 7.0
Mallat 1.0 2.0 4.0 3.0 6.0 5.0 7.0
Phoneme 1.0 2.0 3.0 4.0 6.0 5.0 7.0
StarLightCurves 2.0 1.0 5.0 3.0 6.0 4.0 7.0
MixedShapesRegularTrain 1.0 2.0 5.0 3.0 6.0 4.0 7.0
MixedShapesSmallTrain 1.0 2.0 5.0 3.0 6.0 4.0 7.0
Average Rank 1.95 1.45 3.6 3.35 5.8 4.9 6.95

Max Deviation Average Rank

Table 3.3: Max deviation comparison on 20 homogeneous datasets. Ranks of these dimensionality reduction methods in
each dataset. The bottom line is the average rank of each method.
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Figure 3.11: Max deviation comparison between SAPLA and APLA on 20 homogeneous datasets.
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Figure 3.12: The critical difference diagram of max deviation comparison on 20 homogeneous datasets.
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power than equal-length segment dimensionality reduction methods. Table 3.4 shows that SAPLA

is faster than APLA up to n times (n is the length of the original time series). The baseline di-

mensionality reduction method is APLA. The dimensionality reduction time of each dimensionality

reduction method is divided by the APLA dimensionality reduction time deviation for each dataset.

When the value in Table 3.4 is smaller than one, it means this dimensionality reduction time is faster

than APLA. Otherwise, it is slower than APLA. We could find SAPLA is better than APLA about one

thousand times. Because the original time series length is 1024 in our experiment. We can conclude

that SAPLA is faster than APLA up to n times.
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SAPLA APLA APCA PLA PAA CHEBY PAALM SAX

HandOutlines 6.06e-04 1.00e+00 1.50e-04 1.13e-05 1.39e-05 6.20e-04 1.45e-05 6.22e-05

HouseTwenty 7.16e-04 1.00e+00 5.61e-04 8.58e-06 1.84e-05 5.79e-04 1.78e-05 5.96e-05

PigAirwayPressure 5.88e-04 1.00e+00 3.71e-04 8.80e-06 1.57e-05 5.69e-04 1.78e-05 6.28e-05

PigArtPressure 6.66e-04 1.00e+00 1.54e-04 8.62e-06 1.49e-05 5.96e-04 1.59e-05 5.73e-05

PigCVP 7.70e-04 1.00e+00 1.72e-04 8.64e-06 1.70e-05 6.25e-04 1.62e-05 5.80e-05

InlineSkate 4.66e-04 1.00e+00 1.65e-04 9.66e-06 1.71e-05 5.57e-04 1.88e-05 5.49e-05

EthanolLevel 9.86e-04 1.00e+00 1.80e-04 9.84e-06 1.87e-05 5.92e-04 1.84e-05 6.59e-05

CinCECGTorso 7.87e-04 1.00e+00 2.57e-04 8.83e-06 1.80e-05 5.34e-04 2.10e-05 6.24e-05

SemgHandGenderCh2 7.61e-04 1.00e+00 2.81e-03 9.33e-06 1.93e-05 5.61e-04 2.03e-05 6.52e-05

SemgHandMovementCh2 7.73e-04 1.00e+00 2.43e-03 9.55e-06 2.02e-05 5.94e-04 2.18e-05 6.82e-05

SemgHandSubjectCh2 6.95e-04 1.00e+00 2.81e-03 1.03e-05 2.05e-05 5.75e-04 2.06e-05 6.78e-05

ACSF1 6.40e-04 1.00e+00 2.85e-03 9.37e-06 1.54e-05 5.29e-04 1.56e-05 6.28e-05

EOGHorizontalSignal 5.45e-04 1.00e+00 1.83e-04 1.08e-05 1.78e-05 5.60e-04 1.86e-05 6.40e-05

EOGVerticalSignal 5.58e-04 1.00e+00 2.00e-04 9.58e-06 1.78e-05 5.41e-04 1.86e-05 6.33e-05

Haptics 5.54e-04 1.00e+00 1.60e-04 9.51e-06 1.63e-05 5.54e-04 1.74e-05 1.25e-04

Mallat 8.01e-04 1.00e+00 1.59e-04 1.08e-05 1.65e-05 5.70e-04 1.79e-05 6.54e-05

Phoneme 6.95e-04 1.00e+00 4.14e-04 9.25e-06 1.91e-05 5.68e-04 1.92e-05 6.40e-05

StarLightCurves 9.00e-04 1.00e+00 1.56e-04 9.48e-06 1.50e-05 5.61e-04 1.63e-05 6.51e-05

MixedShapesRegularTrain 7.11e-04 1.00e+00 1.58e-04 9.48e-06 1.64e-05 5.74e-04 1.71e-05 6.32e-05

MixedShapesSmallTrain 7.30e-04 1.00e+00 1.62e-04 9.71e-06 1.69e-05 5.79e-04 1.77e-05 6.79e-05

Dimensionality Reduction Time (s)

Table 3.4: Dimensionality reduction time comparison on 20 homogeneous datasets. The baseline dimensionality reduc-
tion method is APLA. The time unit is second.
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Chapter 4

Lower Bound Distance Measure &

Index Structure for SAPLA

4.1 Overview

This chapter proposes a lower bound distance measure between two time series to guarantee no

false dismissals and tightness for adaptive-length segment dimensionality reduction methods, called

DistPAR. Lower bound lemma can guarantee no-false-dismissals in k-NN search. Tightness of lower

bound distance measure could help to improve k-NN performance. We will prove the lower bound-

ing lemma and the tightness of DistPAR for adaptive-length segment dimensionality reduction meth-

ods. The proposed dimensionality reduction techniques map two original time series into two low

dimensional SAPLA spaces, the DistPAR between them is a lower bound of the Euclidean distance

between these two original time series. We proposed a Distance Based Covering with Convex Hull

( DBCH-tree ) for indexing and implemented the important node splitting and branch picking algo-

rithms using the proposed lower bounding distance in the DBCH-tree construction.

4.1.1 Motivation

APCA [40] proposes two lower bounding distance measures that make adaptive-length segment

dimensionality reduction methods indexable. One keeps lower bounding lemma, called DistLB, and

another has tight Euclidean distance approximation but non-lower bounding, called DistAE . We

propose DistPAR, which has guaranteed lower bounding lemma and tightness.

R-tree [31] splits the node by finding a minimum area waste and picks a branch with a mini-
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mum area increase. However, homogeneous time series datasets are usually from the same sensors,

such as stock price, ECG datasets, pressure and temperature. We find that MBR of homogeneous

time series could cause overlap problems. This thesis proposes DBCH-tree for solving the overlap

problem caused by MBR [40, 31]. The introduction of the MBR is in Appendix.

4.2 Lower Bounding Distance Measure DistPAR

We propose a lower bounding distance measure for adaptive-length segment dimensionality reduc-

tion methods (SAPLA, APLA [48], APCA [40]), denoted as DistPAR. DistPAR can guarantee a lower

bound of the Euclidean distance and a tight approximation of the Euclidean distance. Let q̂i, ĉi de-

note the ith segment SAPLA representations in Q̂, Ĉ, suppose they have the same right endpoint and

segment length denoted as li. Let q̌ j, č j denote the reconstructed point in q̂i, ĉi by a linear function

a∗ j+b, their Euclidean distance square is shown in Eq.(4.1).

DistS(q̂i, ĉi) =
li−1

∑
j=0

(q̌ j− č j)
2 =

li(li−1)(2li−1)
6

(q̂ai
− ĉai)

2

+li(li−1)(q̂ai
− ĉai)(q̂bi

− ĉbi)+ li(q̂bi
− ĉbi)

2

(4.1)

Definition 4.2.1. (DistPAR) There are two SAPLA representations Q̂ and Ĉ. Let Q̂R denote all seg-

ment right points ri in Q̂. Let ĈR denote all segment right points ri in Ĉ. We define R = Q̂R∪ĈR. A

partition process is carried out similarly to the split operation in Section 3.4.3. We regard the right

endpoint of the shorter segment as the split point of the long segment. We could get new shorter

segment representation coefficients a, b by Eq. (3.14)-(3.17). After partition, we could get parti-

tioned Q̂
P

and Ĉ
P

that they have the same segment right endpoints Q̂
P
R = Ĉ

P
R. Thus, DistPAR(Q̂

P
,Ĉ

P
)

is defined in Eq. (4.2).

DistPAR(Q̂
P
,Ĉ

P
) =

√︄
R.size−1

∑
i=0

DistS(q̂
p
i , ĉ

p
i ) (4.2)

Fig. 4.1 shows an example of DistPAR. The Euclidean distance of two original time series is

17. Two original time series of length 10 are reduced to 2 dimensions by adaptive-length segment

dimensionality reduction method SAPLA. Fig. 4.1b shows two reconstructed time series from
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SAPLA representation coefficients. DistPAR partitioned these representations by Definition 4.2.1.

DistPAR = 14 is a very tight approximation of the Euclidean distance. DistAE[13] = 20 does not

lower bound the Euclidean distance. DistLB [13] = 11 is a less tight approximation of the Euclidean

distance. We could find that DistLB < DistPAR < DistAE , which means DistPAR is lower bound the

Euclidean distance and tighter than DistLB. DistAE is bigger than Euclidean distance, which breaks

the lower bounding lemma.

The proof of DistPAR lower bound the Euclidean distance is shown in Section 4.3. The proof of

DistPAR is a tight approximation of the Euclidean distance is shown in Section 4.4. The algorithm

of DistPAR is shown in Algorithm 4.2.1. We already know that DistAE has O(n) time complexity

and that DistLB also needs O(n) time complexity for “projecting” new segment right endpoints [13].

Because of Eq.(3.14)(3.15)(3.16)(3.17), the worst time complexity of DistPAR is smaller than O(n).

4.3 Lower Bounding Lemma for DistPAR

Let Q and C denote two original time series. Let Q̂ and Ĉ denote two SAPLA representations. Let

Q̂
p

and Ĉ
p

denote the partitioned SAPLA representations of Q̂ and Ĉ. In order to guarantee no

false dismissal, DistPAR(Q̂,Ĉ) between two partitioned SAPLA representations Q̂
p

and Ĉ
p

should be

smaller than the Euclidean distance Dist(Q,C) between two time series Q and C. Let N′ denote the

partitioned dimension.

It is obvious that Dist(Q,C) and DistPAR(Q̂,Ĉ) are summation of the distance of all segments.

Q̂
p

and Ĉ
p

have same right endpoints. Thus, it is sufficient to prove one segment that lower bound

distance from partitioned SAPLA is smaller than or equal to Euclidean distance of the same seg-

ments. For the first segment q̂0 = ⟨q̂a, q̂b, q̂r⟩, ĉ0 = ⟨ĉa, ĉb, ĉr⟩, their right endpoints are equal (q̂r =

ĉr). So, the proof of Dist(Q0,C0) ≥ DistPAR(Q̂0,Ĉ0) is same with Dist(Q0,C0) ≥ DistPLA(Q̂0,Ĉ0)

( proved in [15] ). Because the entire distance is summation of all segments, we can guarantee

DistPAR(Q̂,Ĉ)≤ Dist(Q,C).

4.4 Proof of DistPAR Tightness

Let Q̂
p

and Ĉ
p

denote the partitioned SAPLA representations of Q̂ and Ĉ. In order to prove the

tightness of DistPAR, we need to guarantee DistLB ≤ DistPAR.

Q̂
p

and Ĉ
p

have same right endpoints ri. Let Ĉ
p
R denote all the partitioned right endpoints
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Figure 4.1: A visual comparison of lower bounding distance measures for adaptive-length segment representation. The
blue color circle ⃝ and the black clolor box □ are original time series points. × and + are reconstructed time series
points from representation coefficients. Fig.4.1a is the Euclidean distance between two original time series. Fig.4.1b
is two reconstructed time series from the SAPLA dimensionality reduction method (N = 2). Red line is the position to
partition for Fig.4.1c.
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Algorithm 4.2.1: DistPAR Lower Bounding Distance Measure

input : Two SAPLA representations coefficients denoted as Q̂, Ĉ from Q, C.
output: D := lower bounding distance of Q̂ Ĉ.

1 x, y, z, w, e := temp segment;
2 x← q̂0, y← ĉ0;
3 D← 0; i := id in Ĉ; i← 0;
4 v := collection of segment id;
5 v f := the first id in v;
6 ve:= the last id;
7 l := segment length;
8 r := segment right endpoint;
9 while xr ≤ q̂rN−1

or yr ≤ ĉrN−1 do
10 if xr=yr then
11 D+= Dist(x,y) by Eq.(4.1);
12 x++, y++;

13 else
14 if xr > yr then
15 collect i from Ĉ in v when ĉri < xr, i++;
16 tr← xr;
17 while v ! = /0 do
18 if ĉ[v f ].l > ĉ[ve].l then
19 zr ← ĉ[ve−1]r;// here is ĉ[ve]r = xr;
20 wr ← xr;(Another case ĉ[ve]r < xr is similar, we put longer part of x in

next iteration. Detail implementation is in [1]).
21 Compute a,b of z, w by x and Eq.(3.16)(3.17)
22 if wr=tr then e← w
23 else D+= Dist(w, ĉ[ve]); ve−−;
24 x← z;

25 else do similar way like above by Eq.(3.14)(3.15)

26 x← e;
27 y← ĉi;

28 else do similar way like above
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in Ĉ
p
. Let Q̂R denote all segment right endpoints ri in SAPLA representation Q̂. Let ĈR denote all

segment right endpoints ri in SAPLA representation Ĉ. DistLB [40] lower bounding distance measure

converts the original time series Q into a SAPLA representation Q̂
LB

that has the same segment right

endpoints ri with SAPLA representation Ĉ. It is obvious that the SAPLA representation Q̂
LB
R and

ĈR have the same segment right endpoints, and their segment right endpoints are all included in

partitioned SAPLA representation, which means Q̂
LB
R = ĈR ⊆ Ĉ

p
R. Thus, we can conclude that any

segment ĉi in SAPLA representation Ĉ could be computed by one segment or merged (Eq. (3.11)

(3.12)) from several segments in partitioned SAPLA representation Ĉ
p
. Meanwhile, let li = ri− ri−1

denote the segment length. ∃m ∈ [0,k] satisfies ∑
k
j=m Ĉ

p
l j
= Ĉli . It is sufficient to prove one segment

that DistLB(q̂i, ĉi) is smaller than or equal to the DistPAR of one segment or several segments. If

the segment ĉi has the same segment right endpoint as ĉp
k and their segment length are equal, their

distance will be equal. If there are more than two segments in partitioned SAPLA representation Ĉ
p

that their summation of segments length are equal to segment length of ĉi in SAPLA representation

Ĉ, these segments can be merged into two segments ĉp
k−1 and ĉp

k . The above conclusions can also

work on partitioned SAPLA representation Q̂
p

and projected SAPLA representation Q̂
LB

. Thus, we

could get DistLB ≤ DistPAR.

We will prove the tightness of DistPAR on one segment. Let q̂ and ĉ denote the first segment

in DistLB distance approximation. Suppose there are two segments ĉ0, ĉ1 in DistPAR distance ap-

proximation that their summation of segment length is equal to the length of segment ĉ in SAPLA

representation Ĉ, denoted as l = l0 + l1. r = r1. We could regard the ĉ as the SAPLA representa-

tion of reconstructed time series from ĉ0 plus ĉ1. Their reconstructed time series are denoted as

Č0 + Č1. If Č0 + Č1 and Q̌0 + Q̌1 are regarded as two original time series, q̂ and ĉ are regarded as

their SAPLA representation, we will get Dist(Č0 +Č1, Q̌0 + Q̌1)≥ DistPAR(q̂, ĉ) (proved in Section

4.3). According to Section 4.3, Dist(Č0, Q̌0) ≥ DistPAR(q̂0, ĉ0) and Dist(Č1, Q̌1) ≥ DistPAR(q̂1, ĉ1).

Let Q and C denote the original time series in first segment of DistLB distance approximation. Be-

cause we already prove DistLB ≤ DistPAR above, we will have (Dist(C,Q))2 = (Dist(C0,Q0))
2 +

(Dist(C1,Q1))
2 ≥ (DistPAR(q̂0, ĉ0))

2+ (DistPAR(q̂1, ĉ1))
2 ≥ (DistLB (q̂, ĉ))2. We complete the proof

of tightness on the first segment. Because the entire distance is summation of those segments, we

can conclude DistLB (Q̂, Ĉ)≤ DistPAR (Q̂, Ĉ)≤ Dist(Q,C).
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Figure 4.2: Illustration of hierarchical DBCH-tree.

4.5 DBCH-tree

This thesis proposes a height-balanced index structure for covering a set of original time series or

representation coefficients by distance. This index structure referred to as Distance Based Cover-

ing with Convex Hull (DBCH-tree), could efficiently improve indexing. DBCH-tree could build

a tighter index structure than MBR-based R-tree [13] [40]. For a set of n-length time series S =

{C[1], C[2], . . . ,C[T ]}, where C[i] = {ci0,ci1, . . . ,ci(n−1)}. In this thesis, we represent each time

series by SAPLA dimensionality reduction techniques. We could get a set of N segment number

SAPLA representations Ŝ[] = {Ĉ[1], Ĉ[2], . . . ,Ĉ[T ]}, where Ĉ[i] = {ĉi0, ĉi1, . . . , ĉi(N−1)}. Let V de-

note the DBCH structure of Ŝ that (V.u,V.l) = argmaxx,y∈Ŝ[] Dist(x,y). Let V.u and V.l denote one

pair representations with the maximum lower bounding distance. Figure 4.2 shows what a DBCH

structure looks like. Algorithm 4.5.1 shows how to build a DBCH structure. The difference between

DBCH-tree and R-tree is that R-tree uses MBR to contain entries. DBCH-tree uses the convex hull

like Figure 4.2 shows to contain entires. R-tree splits a node or picks a branch based on waste area.

DBCH-tree splits a node or picks a branch based on distance.
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Algorithm 4.5.1: A DBCH Structure for Time Series

input : One time series representation denoted as Ê ′.
output: A DBCH structure.

1 Node := the inserted node.
2 Node += Ê ′;
3 Distmax←−1;
4 for i = 0; i < Node.size; i++ do
5 Apply partition on Ê i and ÊNode.size−1

6 for i = 0; i < Node.size; i++ do
7 for j = i+1; j < Node.size; j++ do
8 //Lower bounding distance measures could be DistPAR, DistPAA, DistAE , DistLB,

DistCheby and DistSAX .
9 Compute lower bounding distance Dist between Ê i and Ê j.

10 if Distmax < Dist then
11 Distmax← Dist;
12 Node.l← Ê i;
13 Node.u← Ê j;

4.6 Node Splitting and Branch Picking

Fig. 4.3 shows how homogeneous time series overlap each other. The most popular node splitting

algorithm in R-tree is the quadratic method. Node splitting algorithm in R-tree select two entries as

seeds that will cause the biggest waste area if we put them into MBR [31] [40]. Like Fig. 4.3a shows,

node splitting in R-tree attempts to find a small-area split. R-tree scans each candidate entry and

computes the combined MBR with each seed. R-tree assigns the candidate entry into the appropriate

group that cause less waste area until all entries are assigned. If the number of assigned entries in

one group is fewer than the user-defined minimum number of entries in one node, the rest entries

are put into that group directly. The branch picking algorithm picks a branch with a minimum area

increase. We propose improved node splitting and branch picking algorithms for time series. We

split node and pick branch by lower bounding distance instead of MBR area. We can avoid serious

overlap problem in node splitting and branch picking process.

As the improvement of node splitting in DBCH-tree , the main difference in comparison with

R-tree is we focus on lower bounding distance measure, not waste area. When one node needs

to split, we first choose the pair with a maximum lower bounding distance and denote them as

seed seed1 and seed2. Then, we compute the lower bounding distance between the rest entries and

these two seeds. If they are close to seed1, we put them in node1. Otherwise, we put them in
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(a) R-tree splits one node into 2 nodes
with minimum waste area.

(b) MBRs overlap each other in 10 time series.

Figure 4.3: This example (10 time series) shows how homogeneous time series MBRs overlap each other.

node2. Branch picking algorithm does similar work that chooses a branch with a minimum distance

increase. Algorithm 4.6.1 shows how to split node by distance and Algorithm 4.6.2 shows how to

pick a branch by distance.

R-tree uses a minimum bounding rectangle (MBR) [31] [40] to contain the entry of points.

DBCH-tree uses a minimum distance convex hull to contain the entry of points. Given a query time

series, we can construct a DBCH-tree for representation points. We can use this DBCH-tree to get

K nearest neighbors (k-NN) queries efficiently. Let R denote one DBCH structure. Let C denote

one time series. The distance between time series and one DBCH structure is shown in Algorithm

4.6.3. GEMINI k-NN algorithm [65] [34] [40] uses a small-distance-first manner with query point

Q over DBCH-tree. This algorithm uses a priority queue to navigate nodes in the Tree from small

distance to big distance. We use lower bounding distance measures, such as DistPAR proposed in

Section 4.2.
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Algorithm 4.6.1: Node Splitting by Distance Measures.

input : One new entry E ′.
output: Two new nodes.

1 Node := the inserted node.
2 Node0, Node1:= two new nodes.
3 MaxFill := The maximum number of the entries in one node.
4 MinFill := The minimum number of the entries in one node.
5 seed0, seed1 := seeds for node splitting // Pick Seeds.
6 Node += E ′;
7 Distmax←−1;
8 for i = 0; i < Node.size; i++ do
9 for j = i+1; j < Node.size; j++ do

10 //Lower bounding distance measures could be DistPAR, DistPAA, DistAE , DistLB,
DistCheby and DistSAX .

11 compute lower bounding distance Dist between Ei and E j.
12 if Distmax < Dist then
13 Distmax← Dist;
14 seed0← i;
15 seed1← j;

16 for i = 0; i < Node.size; i++ do
17 if Ei is not seed and Ei has not been assigned then
18 if Ei is close to seed0 then
19 if Node0.size+MinFill > MaxFill then
20 Node1 += Ei;
21 Node1.size++;

22 else
23 Node0 += Ei;
24 Node0.size++;

25 if Ei is close to seed1 then
26 if Node1.size+MinFill > MaxFill then
27 Node0 += Ei;
28 Node0.size++;

29 else
30 Node1 += Ei;
31 Node1.size++;
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Algorithm 4.6.2: Branch Picking by Distance Measures.

input : One new entry E ′.
output: The branch to pick.

1 f irsttime← true;// get the initial branch
2 di f f erencebest ←−1;
3 for i = 0; i < Node.size; i++ do
4 Combine E ′ with branchi;
5 //Lower bounding distance measures could be DistPAR, DistPAA, DistAE , DistLB,

DistCheby and DistSAX .
6 compute the combined maximum lower bounding distance Distmax after combination;
7 di f f erencecurrent = Distmax - Distcurrent ;
8 if di f f erencecurrent < di f f erencebest or f irsttime then
9 branchbest ← i;

10 distancebest ← Distmax;
11 di f f erencebest ← di f f erencecurrent ;
12 f irsttime ← false;

13 else if di f f erencecurrent == di f f erencebest and Distmax < distancebest then
14 branchbest ← i;
15 distancebest ← Distmax;

Algorithm 4.6.3: Distance Computation Between One Time Series and A DBCH Struc-
ture.

input : One time series C.
One DBCH structure R.
output: DistMBR

1 if DistPAR(C,R.u)> DistPAR(R.l,R.u) then
2 if DistPAR(C,R.l)> DistPAR(C,R.u) then
3 DistMBR← DistPAR(C,R.u)

4 else if DistPAR(C,R.l)≤ DistPAR(C,R.u) then
5 DistMBR← DistPAR(C,R.l)

6 else if DistPAR(C,R.l)> DistPAR(R.l,R.u) then
7 if DistPAR(C,R.l)< DistPAR(C,R.u) then
8 DistMBR← DistPAR(C,R.l)

9 else if DistPAR(C,R.l)≥ DistPAR(C,R.u) then
10 DistMBR← DistPAR(C,R.u)

11 else
12 DistMBR← 0
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4.7 Experimental Evaluation

This section will evaluate the tightness of lower bound, pruning power (ρ) and k-NN time. We have

implemented DistPAR, DistAE , DistLB, DistPAA, DistPLA, DistCHEBY , and DistSAX , R-tree, DBCH-

tree by C++ [1]. Their summaries are shown in Table 2.7. The processor is Intel(R) Core(TM)

i5-7600 CPU @ 3.50 GHz. RAM is 8 GB. We evaluated datasets by VS2019 in Windows 10

system. We evaluated all homogeneous datasets in [18] that time series length is bigger than 1024

(20 datasets), they are in Table 3.1. The parameter is {12≤M ≤ 24,M+= 6}, {2≤ K ≤ 64,K∗=

2}.We evaluate the tightness of lower bound, the equation could be got by Eq. (4.3). We also

evaluate the indexing performance by testing pruning power (ρ). ρ could be got by Eq. (4.4), which

can avoid implementation bias.

4.7.1 Comparison on Tightness of Lower Bound Distance

According to the lower bounding lemma, the lower bound distance between two representations

should always be smaller than the Euclidean distance between their original time series. We want to

get the tightest lower bounds, and it helps us to find the K nearest neighbours which have the small

Euclidean distances. The tightness of lower bound computation is shown in Eq. 4.3.

Tightness o f Lower Bound =
Lower Bound Distance(Ĉ, D̂)

Disteuc(C,D)
(4.3)

Table 4.1 shows the average tightness of lower bound distance for a pair of time series. Each

dataset has one hundred time series. The representation coefficient number has three types. We

divide 3∗99 = 297 for each lower bound distance measurement in each dataset. Because the lower

bound distance measurement should follow the lower bounding lemma, the average tightness of

lower bound should be smaller than one in Table 4.1. The light blue color rectangles in Table

4.1 show that DistAE does not follow the lower bounding lemma. The lower bounding distance

measurement will cause false dismissals in k-NN search if it cannot follow the lower bounding

lemma. So, we focus on comparing the tightness of lower bound between DistPAR and DistLB. Table

4.1 shows DistPAR is tighter than DistLB in each dataset. Table 4.2 shows the average rank of the

lower bounding distance measurements DistPAR, DistAE and DistLB in each dataset. The bottom row

is the average rank of each lower bounding distance measurement. Though DistAE ranks number

one, it does not follow the lower bounding lemma. We could find DistPAR is tighter than DistAE in

two datasets EOGHorizontalSignal and EOGVerticalSignal. We could find DistPAR ranks better
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than DistLB in each dataset.

Figure 4.4 shows the scatter plot of our proposed lower bounding distance measurement DistPAR

and baseline lower bounding distance measurement DistLB. We could find that all black points fall

below the light red colour diagonal line which means DistPAR is tighter than DistAE in each dataset.

Figure 4.5 is a critical difference diagram for the tightness of lower bound. The best ranks are to the

left. The methods on the left side are better than the right side methods. Because we need to compare

multiple lower bound distance measurements in multiple datasets and our proposed lower bound

distance measurement DistPAR with other lower bound distance measurements, the post-hoc analysis

is Bonferroni-Dunn Test. The baseline method name is DistPAR. The predefined threshold value α

is 0.05. The number of datasets is twenty. The tightness average rank is DistPAR : 1.9, DistAE : 1.1,

DistLB : 3.0. The critical difference value is 0.7086664236437339. The null-hypothesis is that

all lower bound distance measurements perform equally well, and the performance differences are

random. If the difference in average ranks between two lower bound distance measurements is

smaller than the critical difference value, their performance difference is not significant (horizontal

line). We could find that these lower bound distance measurements are significantly different.

We use the Wilcoxon signed ranks test for comparison of paired lower bound distance mea-

surements between our proposed lower bound distance measurement DistPAR and other lower bound

distance measurements. The Wilcoxon signed ranks test is a non-parametric statistical hypoth-

esis test. We do not use the t-test because the tightness of lower bound differences of paired

lower bound distance measurements is not a normal distribution. The null-hypothesis is that the

paired lower bound distance measurements perform differently, and the performance differences

are not random. We define the predefined threshold value α as 0.05. The p-values of Wilcoxon

signed ranks test are (DistPAR vs DistAE , p = 1.335144× 10−5 < 0.05), (DistPAR vs DistLB, p =

1.907349×10−6 < 0.05). we would reject the null hypothesis.
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DistPAR DistAE DistLB

HandOutlines 0.9863501683501684 1.0223097643097643 0.9357609427609427

HouseTwenty 0.8386397306397306 0.9338114478114478 0.7374141414141414

PigAirwayPressure 0.972922558922559 0.9743838383838384 0.9336902356902357

PigArtPressure 0.734989898989899 0.9296397306397307 0.5724814814814815

PigCVP 0.8273569023569023 0.9038350168350169 0.7126835016835017

InlineSkate 0.9934478114478114 0.997026936026936 0.9795218855218856

EthanolLevel 0.9488484848484848 0.982986531986532 0.831043771043771

CinCECGTorso 0.9753804713804713 0.9840606060606061 0.8409595959595959

SemgHandGenderCh2 0.4534747474747474 0.7971111111111111 0.28014511784511786

SemgHandMovementCh2 0.4824983164983165 0.7788080808080808 0.29883030303030306

SemgHandSubjectCh2 0.29163063973063974 0.7732154882154882 0.22817171717171716

ACSF1 0.27699730639730635 14.116161616161616 0.25282659932659934

EOGHorizontalSignal 0.9929057239057238 0.9921582491582491 0.9844343434343434

EOGVerticalSignal 0.9901851851851852 0.9877542087542087 0.9806464646464647

Haptics 0.9217542087542089 0.9632289562289562 0.7977609427609428

Mallat 0.8015555555555556 1.5113198653198654 0.6896161616161616

Phoneme 0.43743771043771046 0.799043771043771 0.35943434343434344

StarLightCurves 0.9627205387205388 0.9819057239057238 0.9213501683501684

MixedShapesRegularTrain 0.906902356902357 0.9466767676767677 0.7880404040404041

MixedShapesSmallTrain 0.9297575757575757 0.9622659932659933 0.8232962962962963

Tightness of Lower Bound

Table 4.1: Average tightness of lower bound comparison on the twenty homogeneous datasets. The light blue rectangle
is the lower bound distance bigger than one, breaking the lower bounding lemma.
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DistPAR DistAE DistLB
HandOutlines 2.0 1.0 3.0
HouseTwenty 2.0 1.0 3.0
PigAirwayPressure 2.0 1.0 3.0
PigArtPressure 2.0 1.0 3.0
PigCVP 2.0 1.0 3.0
InlineSkate 2.0 1.0 3.0
EthanolLevel 2.0 1.0 3.0
CinCECGTorso 2.0 1.0 3.0
SemgHandGenderCh2 2.0 1.0 3.0
SemgHandMovementCh2 2.0 1.0 3.0
SemgHandSubjectCh2 2.0 1.0 3.0
ACSF1 2.0 1.0 3.0
EOGHorizontalSignal 1.0 2.0 3.0
EOGVerticalSignal 1.0 2.0 3.0
Haptics 2.0 1.0 3.0
Mallat 2.0 1.0 3.0
Phoneme 2.0 1.0 3.0
StarLightCurves 2.0 1.0 3.0
MixedShapesRegularTrain 2.0 1.0 3.0
MixedShapesSmallTrain 2.0 1.0 3.0
Average Rank 1.9 1.1 3.0

Tightness of Lower Bound Average Rank

Table 4.2: Tightness of lower bound comparison on the twenty homogeneous datasets. DistAE does not follow the lower
bounding lemma.
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Figure 4.4: Scatter plot between DistPAR and DistLB on 20 homogeneous datasets. The dimensionality reduction method
is SAPLA.
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Figure 4.5: The critical difference diagram of tightness of lower bound comparison on 20 homogeneous datasets. The
dimensionality reduction method is SAPLA.
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4.7.2 Comparison on Pruning Power (ρ)

Pruning power is the fraction of the database that has to be measured. When we do a similarity

search, we hope all operations are limited in memory. We do not want to extract all the original time

series C = {c0, c1, . . ., cn−1} from the database that is stored in disk. The optimal dimensionality

reduction method, lower bounding distance measurement and index structure will only need to

extract k nearest original time series from the disk. Therefore, we introduce the pruning power to

evaluate each method.

We compare the pruning power ρ of eight dimensionality reduction methods to avoid implemen-

tation bias. The experiment results of the pruning power are free of the possibility of implementation

basis. According to Eq. 4.4, the smaller of pruning power, the better performance of this method.

The value of the pruning power for any transformation depends on the datasets and is independent

of implementation bias, including programming language, hardware configuration, page size and

spatial access method.

We evaluated the pruning power of SAPLA, PAA, PLA, APCA, APLA, SAX , PAALM and CHEBY

in Section 4.7.2. CHEBY k-NN algorithm is different from other dimensionality reduction meth-

ods. And CHEBY k-NN algorithm involves repeated I/O access, thus pruning power of CHEBY

sometimes bigger than one.

ρ =
the number o f time series which have to be measured

all time series number
(4.4)

Table 4.3 and Table 4.4 show the pruning power of DBCH-tree and R-tree for these eight dimen-

sionality reduction methods. Pruning power is used to evaluate the performance of k-NN search.

There are 20 homogeneous datasets. The baseline index structure is R-tree. The red color rows are

the dimensionality reduction methods that use DBCH-tree to do k-NN search for each dataset, and

the white color rows are the dimensionality reduction methods that use R-tree to do k-NN search

for each dataset. The index structure has smaller value in Table 4.3 and Table 4.4 means it needs to

extract fewer original time series from the hard disk. Table 4.3 and Table 4.4 show the superiority

of SAPLA and APLA in the DBCH-tree. We have proved that DistPAR proposed in Section 4.4 is

tighter than DistLB. DBCH-tree with DistPAR has smaller pruning power than R-tree with DistLB for

adaptive-length segment dimensionality reduction methods SAPLA, APLA and APCA. Equal-length

segment dimensionality reduction methods PLA, PAA and CHEBY have almost the same pruning

in R-tree and DBCH-tree because their lower bounding distance measure is the same in R-tree and
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DBCH-tree, which means their lower bounding lemma is not changed. Because PAALM and SAX

do not consider max deviation, their lower bounding distance measurements DistPAR cannot tightly

lower bound the Euclidean distance between the original time series. Our improved node splitting

and branch picking algorithms (Section 4.6) in DBCH-tree cannot pick similar entries in one node.

Table 4.5 shows the pruning power ranks comparison of each dimensionality reduction method

in DBCH-tree and R-tree index structures for each dataset. The red color columns use DBCH-tree

in k-NN search. The white color columns use R-tree in k-NN search. The bottom row is the average

rank of each dimensionality reduction method in DBCH-tree and R-tree index structures. We could

find DBCH-tree strongly affects adaptive-length segment dimensionality reduction methods SAPLA,

APLA and APCA. For example, when SAPLA transfers the index structure from R-tree to DBCH-

tree in k-NN search, the average rank of SAPLA changes from 7.425 to 1.575. The average rank of

APLA changes from 8.725 to 1.825. The average rank of APCA changes from 10.5 to 4.95. The

pruning power average ranks of these dimensionality reduction methods transfer the index structure

from R-tree to DBCH-tree in k-NN search are SAPLA (7.425→ 1.575), APLA (8.725→ 1.825),

APCA (10.5 → 4.95), PLA (7.35 → 6.05), PAA (8.3 → 7.0), CHEBY (14.0 → 14.0), PAALM

(13.05→ 13.9), SAX (9.05→ 8.3). Because CHEBY dimensionality reduction method directly

uses Chebyshev coefficients as the entries in index structure. DBCH-tree has no effect on Cheby-

shev coefficients. CHEBY dimensionality reduction method has the same pruning power in R-tree

and DBCH-tree. We could find the pruning power of three adaptive-length segment dimensional-

ity reduction methods and three equal-length segment dimensionality reduction methods becoming

better when using DBCH-tree to replace R-tree.
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Index SAPLA APLA APCA PLA PAA CHEBY PAALM SAX

HandOutlines R-tree 20.52 21.05 36.69 20.23 20.89 39.13 71.13 57.23

DBCH-tree 19.21 19.44 25.15 19.97 20.62 39.13 75.76 55.40

HouseTwenty R-tree 68.74 74.83 75.51 73.21 74.02 95.94 88.78 69.56

DBCH-tree 41.23 44.06 46.73 70.28 71.25 95.94 90.00 64.01

PigAirwayPressure R-tree 36.68 37.64 41.83 35.11 35.57 56.09 58.79 42.97

DBCH-tree 33.91 33.91 34.65 34.63 34.93 56.09 69.46 42.26

PigArtPressure R-tree 56.07 57.62 57.87 43.01 43.41 73.82 84.15 35.03

DBCH-tree 30.98 31.21 34.00 41.41 41.87 73.82 85.38 33.92

PigCVP R-tree 71.30 71.36 76.46 64.88 66.08 94.39 89.98 52.93

DBCH-tree 39.29 39.99 45.57 62.81 64.05 94.39 90.00 50.73

InlineSkate R-tree 20.45 20.82 27.12 19.60 20.62 38.18 62.25 34.74

DBCH-tree 19.17 19.22 20.78 19.51 20.43 38.18 83.57 33.26

EthanolLevel R-tree 27.96 25.87 40.39 34.14 34.16 47.73 74.15 70.51

DBCH-tree 19.86 19.84 23.02 32.13 31.18 47.73 83.94 76.34

CinCECGTorso R-tree 42.74 43.28 48.10 52.43 53.56 89.42 71.66 62.27

DBCH-tree 23.31 22.64 24.68 50.88 52.92 89.42 83.48 63.08

SemgHandGenderCh2 R-tree 90.00 90.00 90.00 90.00 90.00 108.90 90.00 89.78

DBCH-tree 85.30 85.92 90.00 90.00 90.00 108.90 90.00 89.66

SemgHandMovementCh2 R-tree 90.00 90.00 90.00 90.00 90.00 108.90 90.00 89.95

DBCH-tree 85.26 86.38 89.91 90.00 90.00 108.90 90.00 89.95

Table 4.3: Pruning power comparison on the first ten homogeneous datasets. The white color rectangle is original
R-tree. The red color rectangle is DBCH-tree.
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Index SAPLA APLA APCA PLA PAA CHEBY PAALM SAX

SemgHandSubjectCh2 R-tree 90.00 90.00 90.00 90.00 90.00 108.90 90.00 89.57

DBCH-tree 88.00 88.66 90.00 90.00 90.00 108.90 90.00 89.57

ACSF1 R-tree 44.60 44.86 50.85 48.41 45.23 69.32 25.41 20.45

DBCH-tree 36.15 33.35 48.10 48.18 47.90 69.32 25.44 19.92

EOGHorizontalSignal R-tree 20.55 20.93 24.42 20.88 21.54 41.48 52.75 33.36

DBCH-tree 19.24 19.33 19.77 20.66 20.86 41.48 79.42 32.86

EOGVerticalSignal R-tree 20.47 21.13 23.37 21.29 22.06 43.11 56.21 33.51

DBCH-tree 19.34 19.38 19.54 20.73 21.46 43.11 78.46 32.88

Haptics R-tree 32.66 39.34 42.79 25.88 27.68 46.22 76.63 51.59

DBCH-tree 21.68 24.37 26.32 24.66 26.19 46.22 87.29 48.10

Mallat R-tree 49.06 50.41 59.91 43.23 43.95 66.67 82.91 64.56

DBCH-tree 29.03 25.58 40.08 40.61 41.29 66.67 87.46 62.90

Phoneme R-tree 90.00 90.00 90.00 90.00 89.99 108.90 90.00 84.86

DBCH-tree 81.16 81.41 83.36 90.00 89.97 108.90 90.00 83.82

StarLightCurves R-tree 26.01 26.01 31.99 23.11 24.33 43.97 59.50 37.84

DBCH-tree 19.96 19.91 21.43 22.46 23.44 43.97 77.33 37.49

MixedShapesRegularTrain R-tree 37.71 37.82 47.76 27.68 29.11 52.43 80.08 42.41

DBCH-tree 23.95 23.32 26.59 26.38 27.87 52.43 88.77 40.65

MixedShapesSmallTrain R-tree 37.71 37.82 47.76 27.68 29.11 52.43 80.08 42.41

DBCH-tree 23.95 23.32 26.59 26.38 27.87 52.43 88.77 40.65

Table 4.4: Pruning power comparison on the last ten homogeneous datasets. The white color rectangle is original
R-tree. The red color rectangle is DBCH-tree.
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Table 4.5: Pruning power comparison on the 20 homogeneous datasets.
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Figure 4.6 shows the pruning power scatter plot of our proposed index structure DBCH-tree and

the baseline index structure R-tree. We could find that all black points fall above the red colour

diagonal line. This situation means the pruning power becomes better in k-NN search when we use

DBCH-tree to replace R-tree in all datasets.

Figure 4.7 is a pruning power critical difference diagram for adaptive-length segment dimen-

sionality reduction methods SAPLA, APLA and APCA use DBCH-tree and R-tree in k-NN search.

The “ ∗ ” means the adaptive-length segment dimensionality reduction method uses DBCH-tree in

k-NN search. The adaptive-length segment dimensionality reduction method without “ ∗ ” uses R-

tree index structure in k-NN search. The best ranks are to the left. The adaptive-length segment

dimensionality reduction methods use DBCH-tree index structure on the left side to have better

pruning power than the right side adaptive-length segment dimensionality reduction methods use

R-tree index structure. Because we need to compare multiple dimensionality reduction methods

in multiple datasets and our proposed adaptive-length segment dimensionality reduction method

SAPLA uses our proposed DBCH-tree index structure with other dimensionality reduction methods

using DBCH-tree or R-tree, the post-hoc analysis is Bonferroni-Dunn Test. The baseline method

name is SAPLA∗. The predefined threshold value α is 0.05. The number of datasets is twenty. The

pruning power average rank of these adaptive-length segment dimensionality reduction methods is

SAPLA∗ : 1.35, APLA∗ : 1.60, APCA∗ : 3.35, SAPLA : 4.00, APLA : 4.70, APCA : 5.70. The critical

difference value is 1.5239821521264612. The null-hypothesis is that our proposed adaptive-length

segment dimensionality reduction method SAPLA uses our proposed DBCH-tree index structure

performs equally well in k-NN search with other adaptive-length segment dimensionality reduction

methods using DBCH-tree or R-tree index structure and the performance differences are random. If

the difference in average ranks between two dimensionality reduction methods is smaller than the

critical difference value, their performance difference is not significant (horizontal line). We could

find the pruning power of two adaptive-length dimensionality reduction methods SAPLA and APLA

are not significantly different when using DBCH-tree index structure in k-NN search.
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Figure 4.6: Scatter plot of pruning power between DBCH-tree and R-tree on 20 homogeneous datasets. The dimension-
ality reduction method is SAPLA.
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Figure 4.7: Pruning power comparison between DBCH-tree and R-tree for adaptive-length segment dimensionality
reduction methods on 20 homogeneous datasets.
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We use the Wilcoxon signed ranks test for paired comparison between our proposed index struc-

ture DBCH-tree and R-tree in each dimensionality reduction method. The Wilcoxon signed ranks

test is a non-parametric statistical hypothesis test. We do not use the t-test, because the pruning

power differences of DBCH-tree and R-tree in each dimensionality reduction method are not nor-

mal distributions. The null-hypothesis is that the DBCH-tree and R-tree in each dimensionality

reduction method perform equally well, and the performance differences are random. We define the

predefined threshold value α as 0.05. The p-values of Wilcoxon signed ranks test are (SAPLA vs

SAPLA∗: p = 8.844915× 10−5 < 0.05), (APLA vs APLA∗: p = 8.832386× 10−5 < 0.05), (APCA

vs APCA∗: p = 1.960934× 10−4 < 0.05), (PLA vs PLA∗: p = 4.36809× 10−4 < 0.05), (PAA vs

PAA∗: p = 3.589969×10−3 < 0.05), (PAALM vs PAALM∗: p = 4.36809×10−4 < 0.05), (SAX vs

SAX∗: p = 8.411029×10−3 < 0.05). we would reject the null hypothesis.

We can conclude that under the threshold 0.05, our proposed adaptive-length segment dimen-

sionality reduction method SAPLA has better pruning power than the adaptive-length segment di-

mensionality reduction method APLA in the DBCH-tree index structure and R-tree index struc-

ture. The pruning power of our proposed adaptive-length segment dimensionality reduction method

SAPLA is much better than the adaptive-length segment dimensionality reduction method APCA.

Three adaptive-length segment dimensionality reduction methods SAPLA, APLA and APCA and

three equal-length segment dimensionality reduction methods in the DBCH-tree index structure

have better pruning power than in the R-tree index structure.

4.7.3 Comparison on k-NN Time

Table 4.6 and Table 4.7 show the k-NN time of DBCH-tree and R-tree for these eight dimensionality

reduction methods. There are 20 homogeneous datasets. The baseline index structure is R-tree. The

red color rows are the dimensionality reduction methods that use DBCH-tree to do k-NN search

for each dataset, and the white color rows are the dimensionality reduction methods that use R-tree

to do k-NN search for each dataset. The index structure has smaller value in Table 4.6 and Table

4.7 means it has fast k-NN search. Table 4.6 and Table 4.7 show SAPLA and APLA have similar

k-NN search time in DBCH-tree and R-tree index structures. The experiments in Section 4.7.2 show

DBCH-tree could improve the pruning power of SAPLA and APLA in k-NN search. Equal-length

segment dimensionality reduction methods PAA, PAALM and SAX speed up k-NN search when

using DBCH-tree to replace R-tree.

Table 4.8 shows the k-NN search time ranks comparison of each dimensionality reduction
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method in DBCH-tree and R-tree index structures for each dataset. The red color columns use

DBCH-tree in k-NN search. The white color columns use R-tree in k-NN search. The bottom

row is the average rank of each dimensionality reduction method in DBCH-tree and R-tree index

structures. We could find DBCH-tree has a strong effect on pruning power of adaptive-length seg-

ment dimensionality reduction methods SAPLA, APLA and APCA with similar k-NN search time.

DBCH-tree improves the rank of equal-length segment dimensionality reduction methods PAA,

PAALM and SAX . The k-NN search time average ranks of these dimensionality reduction methods

transfer the index structure from R-tree to DBCH-tree in k-NN search are SAPLA (10.8→ 11.1),

APLA (11.25→ 10.8), APCA (13.55→ 8.35), PLA (1.0→ 2.05), PAA (13.2→ 3.9), CHEBY

(7.05→ 6.35), PAALM (14.3→ 5.05), SAX (14.1→ 3.15). Because PLA dimensionality reduction

method proposes a novel distance computation equation between the query time series and the inter-

nal node of the index structure. DBCH-tree index structure has a slower time than the R-tree index

structure. However, DBCH-tree index structure has better pruning power for PLA than the R-tree

index structure. We could find the k-NN search time of two adaptive-length segment dimensional-

ity reduction methods and four equal-length segment dimensionality reduction methods becoming

better when using DBCH-tree to replace R-tree.

Figure 4.8 shows the scatter plot of our proposed index structure DBCH-tree and the baseline

index structure R-tree. There are twenty datasets in this scatter plot. Each black color represents a

dataset. We could find that seven black points fall below a red colour diagonal line. This situation

means the k-NN search time becomes slower in k-NN search when we use DBCH-tree index struc-

ture to replace R-tree in seven datasets. However, the DBCH-tree index structure helps to speed up

k-NN search time in thirteen datasets.

Figure 4.9 is a k-NN search time critical difference diagram for adaptive-length segment dimen-

sionality reduction methods SAPLA, APLA and APCA use DBCH-tree and R-tree in k-NN search.

The “∗” means the adaptive-length segment dimensionality reduction method uses DBCH-tree in k-

NN search. The adaptive-length segment dimensionality reduction method without “∗” uses R-tree

index structure in k-NN search. The best ranks are to the left. Because we need to compare multiple

dimensionality reduction methods in multiple datasets and compare our proposed adaptive-length

segment dimensionality reduction method SAPLA uses our proposed DBCH-tree index structure

with other dimensionality reduction methods use DBCH-tree or R-tree, the post-hoc analysis is

Bonferroni-Dunn Test. The baseline method name is SAPLA∗. The predefined threshold value α

is 0.05. The number of datasets is twenty. The k-NN search time average rank of these adaptive-
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length segment dimensionality reduction methods is SAPLA∗ : 3.55, APLA∗ : 3.25, APCA∗ : 1.60,

SAPLA : 3.55, APLA : 3.90, APCA : 5.15. The critical difference value is 1.5239821521264612.

The null-hypothesis is that our proposed adaptive-length segment dimensionality reduction method

SAPLA uses our proposed DBCH-tree index structure performs equally well in k-NN search with

other adaptive-length segment dimensionality reduction methods using DBCH-tree or R-tree in-

dex structure. If the difference of average ranks between two dimensionality reduction methods is

smaller than the critical difference value, their performance difference is not significant (horizontal

line). We could find two adaptive-length dimensionality reduction methods SAPLA and APLA are

not significantly different when using DBCH-tree index structure in k-NN search.
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Index SAPLA APLA APCA PLA PAA CHEBY PAALM SAX

HandOutlines R-tree 0.26 0.27 1.28 0.02 0.42 0.09 0.46 0.47

DBCH-tree 0.27 0.26 0.06 0.03 0.04 0.08 0.07 0.04

HouseTwenty R-tree 0.82 0.87 0.98 0.03 0.84 0.11 0.88 0.91

DBCH-tree 0.31 0.30 0.25 0.05 0.06 0.10 0.07 0.05

PigAirwayPressure R-tree 0.72 2.97 2.08 0.02 0.69 0.09 0.73 0.72

DBCH-tree 0.34 0.35 0.14 0.03 0.04 0.08 0.06 0.04

PigArtPressure R-tree 0.22 0.24 0.33 0.02 0.41 0.09 0.43 0.42

DBCH-tree 0.32 0.33 0.11 0.04 0.05 0.09 0.06 0.04

PigCVP R-tree 0.28 0.28 0.40 0.03 0.45 0.09 0.56 2.52

DBCH-tree 0.33 0.34 0.15 0.04 0.05 0.10 0.07 0.05

InlineSkate R-tree 0.41 0.41 0.77 0.01 0.70 0.08 0.72 0.73

DBCH-tree 0.29 0.29 0.11 0.03 0.04 0.07 0.07 0.04

EthanolLevel R-tree 0.46 0.46 0.57 0.02 0.70 0.08 0.71 0.72

DBCH-tree 0.15 0.16 0.06 0.03 0.04 0.07 0.07 0.04

CinCECGTorso R-tree 0.40 0.37 0.52 0.03 3.28 0.10 0.68 0.67

DBCH-tree 0.25 0.23 0.13 0.04 0.05 0.09 0.07 0.05

SemgHandGenderCh2 R-tree 0.19 0.19 0.21 0.03 0.30 0.10 0.29 0.28

DBCH-tree 0.34 0.31 0.28 0.06 0.07 0.10 0.07 0.06

SemgHandMovementCh2 R-tree 0.19 0.19 0.20 0.03 0.27 0.10 0.49 0.28

DBCH-tree 0.35 0.32 0.27 0.05 0.07 0.09 0.07 0.06

Table 4.6: k-NN search time comparison on the first ten homogeneous datasets. The is original R-tree. The is
DBCH-tree.
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Index SAPLA APLA APCA PLA PAA CHEBY PAALM SAX

SemgHandSubjectCh2 R-tree 0.18 0.18 0.18 0.03 0.26 0.10 0.27 0.26

DBCH-tree 0.35 0.31 0.29 0.06 0.07 0.10 0.07 0.06

ACSF1 R-tree 0.35 0.36 0.44 0.02 0.37 0.08 0.38 0.39

DBCH-tree 0.29 0.35 0.18 0.05 0.06 0.08 0.05 0.03

EOGHorizontalSignal R-tree 0.66 1.11 0.90 0.01 0.77 0.08 0.80 0.80

DBCH-tree 0.23 0.22 0.10 0.03 0.04 0.07 0.07 0.04

EOGVerticalSignal R-tree 0.67 0.62 0.93 0.01 0.88 0.08 0.84 0.84

DBCH-tree 0.20 0.20 0.11 0.03 0.03 0.07 0.06 0.03

Haptics R-tree 0.27 0.31 0.53 0.02 0.62 0.08 0.65 0.66

DBCH-tree 0.23 0.22 0.07 0.03 0.04 0.07 0.07 0.04

Mallat R-tree 0.24 0.23 0.34 0.02 0.38 0.09 0.39 0.39

DBCH-tree 0.19 0.18 0.08 0.04 0.05 0.08 0.07 0.04

Phoneme R-tree 0.22 0.21 0.25 0.03 0.32 0.10 0.31 0.33

DBCH-tree 0.34 0.38 0.34 0.06 0.07 0.10 0.06 0.06

StarLightCurves R-tree 1.52 0.40 0.68 0.01 0.61 0.08 0.65 0.60

DBCH-tree 0.29 0.28 0.09 0.03 0.04 0.07 0.06 0.03

MixedShapesRegularTrain R-tree 0.30 0.31 0.59 0.02 0.59 0.09 0.64 0.61

DBCH-tree 0.29 0.27 0.09 0.03 0.04 0.08 0.07 0.04

MixedShapesSmallTrain R-tree 0.31 0.33 3.06 0.02 0.59 0.08 0.63 0.61

DBCH-tree 0.29 0.27 0.09 0.03 0.04 0.08 0.07 0.04

Table 4.7: k-NN search time comparison on the last ten homogeneous datasets. The is original R-tree. The is
DBCH-tree.
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Table 4.8: k-NN time average rank comparison on the 20 homogeneous datasets.
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Figure 4.8: Scatter plot of k-NN time between DBCH-tree and R-tree on 20 homogeneous datasets. The dimensionality
reduction method is SAPLA.
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Figure 4.9: k-NN time comparison between DBCH-tree and R-tree for adaptive-length segment dimensionality reduction
methods on 20 homogeneous datasets.

We use the Wilcoxon signed ranks test for paired k-NN search time comparison between our

proposed index structure DBCH-tree and R-tree in each dimensionality reduction method. The

Wilcoxon signed ranks test is a non-parametric statistical hypothesis test. We do not use the t-test

because the pruning power differences of DBCH-tree and R-tree in each dimensionality reduc-

tion method are not normal distributions. The null-hypothesis is that the DBCH-tree and R-tree

in each dimensionality reduction method performs equally well, and the performance differences

are random. We define the predefined threshold value α as 0.05. The p-values of Wilcoxon

signed ranks test are (SAPLA vs SAPLA∗: p = 1.230927× 10−1 > 0.05), (APLA vs APLA∗: p

= 1.230927×10−1 > 0.05), (APCA vs APCA∗: p = 8.201599×10−5 < 0.05), (PLA vs PLA∗: p =

1.907349×10−6 < 0.05), (PAA vs PAA∗: p = 1.907349×10−6 < 0.05), (CHEBY vs CHEBY∗: p

= 6.389618×10−3 < 0.05), (PAALM vs PAALM∗: p = 1.907349×10−6 < 0.05), (SAX vs SAX∗:

p = 1.907349×10−6 < 0.05). we would reject the null hypothesis for six dimensionality reduction

methods. The p-values of two adaptive-length segment dimensionality reduction methods are bigger

than 0.05. They do not reject the null hypothesis.
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Chapter 5

Conclusion

5.1 Summaries

Dimensionality reduction techniques and time series similarity search are widely studied and im-

portant field that provide the basis for many higher level data mining tasks. A general framework

called Generic Multimedia Indexing Method (GEMINI) [23] converts time series into a lower di-

mensional point. It uses a lower bound of the Euclidean distance to guarantee no-false-dismissals

while filtering through the index. Under the GEMINI structure, this thesis proposes one adaptive-

length segment dimensionality reduction method SAPLA, one lower bounding measure DistPAR for

adaptive-length segment dimensionality reduction methods, and a DBCH-tree structure that uses

distance based node splitting and branch picking algorithms. For whole sequence similarity match-

ing, R-tree index, DBCH-tree index and k-NN algorithms are implemented. We evaluated several

classic dimensionality reduction methods by real datasets.

We implement and analyze the existing basic dimensionality reduction techniques for time se-

ries data. For x-axis dimensionality reduction, we analyze the equal-length segment dimensionality

reduction method PLA [15], PAA [39], CHEBY and PAALM [61]. We also analyze adaptive-length

segment dimensionality reduction methods APCA [40] and APLA [48]. We point out the limitations

of the existing dimensionality reduction techniques and evaluate the dimensionality reduction tech-

niques on real-life datasets. We also conduct preliminary research and make some improvements to

the existing dimensionality reduction techniques. Our experimental results on several datasets com-

pare and verify the efficiency and effectiveness of the existing techniques in Chapter 2, including

several dimensionality reduction techniques, one index building method, and two k-nearest neigh-

bours (k-NN) search methods. APLA [48] combines the virtues of APCA [40] and PLA [15] for the
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smaller max deviation. Because APLA has the guaranteed error bounds (scan each point to get max

deviation) in the reduction process, APLA has O(Nn2) time complexity (n is the original time series

length, and N denotes the segment number after the reducing process). Our experiment shows that

the dimensionality reduction time of APLA is much slower than other methods. We propose SAPLA

that decreases dimensionality reduction runtime while keeping retrieval performance compared to

APLA.

We propose an adaptive-length dimensionality reduction method (SAPLA) in Section 3.4. SAPLA

focuses on finding segment endpoints to reduce the sum upper bound of segment max devia-

tion. SAPLA prunes redundant computation for dimensionality reduction time reduction (O(n(

N+ logn))), which is much faster than APLA [48] (O(Nn2)) about n times in Section 3.5.3. Our ex-

periment shows SAPLA sacrifices little max deviation as presented in Section 3.5.2. SAPLA uses a,

b of a linear function and adaptive-length segment to represent time series for small max deviation

with fewer segments. SAPLA is structured into three logical phases (initialisation, split & merge it-

eration, segment endpoint iteration) and the we analyse its runtime complexity which is significantly

lower O(n ∗ (N + logn)) compared to APLA time complexity O(n2 ∗N). Further more, SAPLA is

faster than APLA about n times with little max deviation loss in our experiment. In the initialisation

stage, users set a segment number N. Time series C is initialized into Ĉ. In the second stage, split &

merge iteration tries to reduce the sum upper bound by splitting a segment with the maximum up-

per bound into two segments and merging two adjacent segments with the minimum reconstruction

area. The segment endpoint movement iteration helps to reduce the sum upper bound. Finally, we

will get SAPLA representation Ĉ = {⟨a0,b0,r0⟩, . . . ,⟨aN−1,bN−1,rN−1⟩}.

SAPLA is in comparison with other seven dimensionality reduction methods (PLA [15], APCA

[40], PLA [15], CHEBY [9], APLA [48], PAALM [61], SAX [60]) through 20 (n≥ 1024) real homo-

geneous datasets [18]. SAPLA shows small max deviation, pruning power (ρ), fast dimensionality

reduction time and indexing time.

This thesis proposes a lower bounding distance measures DistPAR for SAPLA, APLA and APCA.

DistPAR has a guaranteed lower bounding lemma, and it is tighter than DistLB. DistAE has a tight

Euclidean distance approximation but non-lower bounding. DistPAR combines virtues of DistLB [40]

and DistAE [40]. This thesis also explains how to use adaptive-length dimensionality reduction

techniques in R-Tree to retrieve k-NN time series queries efficiently. MBR of homogeneous time

series could cause serious overlap problem in R-tree. Thus, we propose a DBCH-tree that splits

the node and picks the branch by lower bounding distance instead of waste area. DBCH-tree could
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efficiently improve indexing in our experiment.

In the experimental evaluation, this thesis compares eight time series dimensionality reduction

techniques on 20 datasets from the UCR2018 archive. The dominant use case is similarity search

using an R-tree and a DBCH-tree. SAPLA shows similar max deviation, pruning power, accuracy

and k-NN time compared to APLA. However, SAPLA’s dimensionality reduction time is faster

compared to APLA, which accompanies the theoretical runtime complexities.

Our proposed research will bring innovative analysis techniques (such as clustering, matching,

filtering and visualization) to high-dimensional spatiotemporal trajectories management, including

motif discovery, data characteristics understanding, hypotheses validation, and private data publica-

tion. State failure detection will provide an early warning to our future city.

5.2 Limitations and Future Work

This thesis is motivated by proposing an essential dimensionality reduction method for higher-

level data mining tasks like classification, motif discovery and anomaly detection. The limitation

is that there is no research on higher-level data mining tasks like calculating the matrix profile for

motif discovery. The proposed adaptive-length segment dimensionality reduction method applies a

conditional upper bound max deviation reduction, not the unconditional upper bound. The distance

measure is Euclidean distance, not Dynamic Time Warping (DTW ) distance. The similarity search

is whole sequence matching, not sub-sequence matching. The DBCH-tree constructs the index

structure based on distance. If the entry does not consider the distance between each other or cannot

get accurate distance measures, DBCH-tree will put dissimilarity entries together and damage the

similarity search process.

• The proposed dimensionality reduction technique in this thesis provides a conditional up-

per bound for max deviation reduction. A guaranteed upper bound for max deviation could

help to get minimum max deviation, reconstruction error between original time series and

reconstructed time series by representation coefficients and how to achieve global minimum

reconstruction error should be investigated further.

• Use Dynamic Time Warping (DTW ) distance measure instead of Euclidean distance. DTW

is widely applied in similarity search, clustering, classification, anomaly detection and so on.

DTW has O(n2) time complexity.
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• Apply higher-level data mining tasks such as classification, motif discovery, sub-sequence

matching, or anomaly detection. The sub-sequence matching is a generalization of whole

matching. Our proposed adaptive-length segment dimensionality reduction methods and in-

dex structure could be extended to sub-sequence matching in the future.

• Propose an extended SAX dimensionality reduction method based on the y-axis dimension,

which can improve the similarity performance and has a small dimensionality reduction time.
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Appendix A

Detail Experiment Report for Each

Dataset

There are 20 homogeneous datasets.
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Figure A.1: Dataset 1HO, HandOutlines. K = 2,4,8,16,32,64. We show the max deviation, dimensionality reduction
time, pruning power, K-NN time of each dataset. The solid line represents original R-tree. The dashed line represents
DBCH-tree. The horizontal axis is representation coefficients number M.
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Figure A.2: Dataset 2HT , HouseTwenty. K = 2,4,8,16,32,64. We show the max deviation, dimensionality reduction
time, pruning power, K-NN time of each dataset. The solid line represents original R-tree. The dashed line represents
DBCH-tree. The horizontal axis is representation coefficients number M.
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Figure A.3: Dataset 3PAP, PigAirwayPressure. K = 2,4,8,16,32,64. We show the max deviation, dimensionality
reduction time, pruning power, K-NN time of each dataset. The solid line represents original R-tree. The dashed line
represents DBCH-tree. The horizontal axis is representation coefficients number M.
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Figure A.4: Dataset 4PAPS, PigArtPressure. K = 2,4,8,16,32,64. We show the max deviation, dimensionality reduc-
tion time, pruning power, K-NN time of each dataset. The solid line represents original R-tree. The dashed line represents
DBCH-tree. The horizontal axis is representation coefficients number M.
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Figure A.5: Dataset 5CV P, PigCV P. K = 2,4,8,16,32,64. We show the max deviation, dimensionality reduction time,
pruning power, K-NN time of each dataset. The solid line represents original R-tree. The dashed line represents DBCH-
tree. The horizontal axis is representation coefficients number M.
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Figure A.6: Dataset 6IS, InlineSkate. K = 2,4,8,16,32,64. We show the max deviation, dimensionality reduction time,
pruning power, K-NN time of each dataset. The solid line represents original R-tree. The dashed line represents DBCH-
tree. The horizontal axis is representation coefficients number M.
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Figure A.7: Dataset 7EL, EthanolLevel. K = 2,4,8,16,32,64. We show the max deviation, dimensionality reduction
time, pruning power, K-NN time of each dataset. The solid line represents original R-tree. The dashed line represents
DBCH-tree. The horizontal axis is representation coefficients number M.
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Figure A.8: Dataset 8CT , CinCECGTorso. K = 2,4,8,16,32,64. We show the max deviation, dimensionality reduction
time, pruning power, K-NN time of each dataset. The solid line represents original R-tree. The dashed line represents
DBCH-tree. The horizontal axis is representation coefficients number M.
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Figure A.9: Dataset 9SHG, SemgHandGenderCh2. K = 2,4,8,16,32,64. We show the max deviation, dimensionality
reduction time, pruning power, K-NN time of each dataset. The solid line represents original R-tree. The dashed line
represents DBCH-tree. The horizontal axis is representation coefficients number M.
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Figure A.10: Dataset 10SHM, SemgHandMovementCh2. K = 2,4,8,16,32,64. We show the max deviation, dimension-
ality reduction time, pruning power, K-NN time of each dataset. The solid line represents original R-tree. The dashed
line represents DBCH-tree. The horizontal axis is representation coefficients number M.
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Figure A.11: Dataset 11SHS, SemgHandSub jectCh2. K = 2,4,8,16,32,64. We show the max deviation, dimensionality
reduction time, pruning power, K-NN time of each dataset. The solid line represents original R-tree. The dashed line
represents DBCH-tree. The horizontal axis is representation coefficients number M.
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Figure A.12: Dataset 12ACS, ACSF1. K = 2,4,8,16,32,64. We show the max deviation, dimensionality reduction time,
pruning power, K-NN time of each dataset. The solid line represents original R-tree. The dashed line represents DBCH-
tree. The horizontal axis is representation coefficients number M.
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Figure A.13: Dataset 13EHS, EOGHorizontalSignal. K = 2,4,8,16,32,64. We show the max deviation, dimensionality
reduction time, pruning power, K-NN time of each dataset. The solid line represents original R-tree. The dashed line
represents DBCH-tree. The horizontal axis is representation coefficients number M.
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Figure A.14: Dataset 14EV S, EOGverticalSignal. K = 2,4,8,16,32,64. We show the max deviation, dimensionality
reduction time, pruning power, K-NN time of each dataset. The solid line represents original R-tree. The dashed line
represents DBCH-tree. The horizontal axis is representation coefficients number M.
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Figure A.15: Dataset 15H, Haptics. K = 2,4,8,16,32,64. We show the max deviation, dimensionality reduction time,
pruning power, K-NN time of each dataset. The solid line represents original R-tree. The dashed line represents DBCH-
tree. The horizontal axis is representation coefficients number M.
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Figure A.16: Dataset 16M, Mallat. K = 2,4,8,16,32,64. We show the max deviation, dimensionality reduction time,
pruning power, K-NN time of each dataset. The solid line represents original R-tree. The dashed line represents DBCH-
tree. The horizontal axis is representation coefficients number M.
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Figure A.17: Dataset 17PM, Phoneme. K = 2,4,8,16,32,64. We show the max deviation, dimensionality reduction
time, pruning power, K-NN time of each dataset. The solid line represents original R-tree. The dashed line represents
DBCH-tree. The horizontal axis is representation coefficients number M.
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Figure A.18: Dataset 18SLC, StarLightCurves. K = 2,4,8,16,32,64. We show the max deviation, dimensionality
reduction time, pruning power, K-NN time of each dataset. The solid line represents original R-tree. The dashed line
represents DBCH-tree. The horizontal axis is representation coefficients number M.
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Figure A.19: Dataset 19MSR, MixedShapesRegularTrain. K = 2,4,8,16,32,64. We show the max deviation, dimen-
sionality reduction time, pruning power, K-NN time of each dataset. The solid line represents original R-tree. The dashed
line represents DBCH-tree. The horizontal axis is representation coefficients number M.
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Figure A.20: Dataset 20MST , MixedShapesSmallTrain. K = 2,4,8,16,32,64. We show the max deviation, dimension-
ality reduction time, pruning power, K-NN time of each dataset. The solid line represents original R-tree. The dashed
line represents DBCH-tree. The horizontal axis is representation coefficients number M.
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[32] W. K. Härdle, N. Hautsch, and L. Overbeck. Applied quantitative finance, volume 2. Springer,

2017.

[33] G. R. Hjaltason and H. Samet. Distance browsing in spatial databases. ACM Trans. Database

Syst., 24(2):265–318, June 1999. ISSN 0362-5915. doi: 10.1145/320248.320255. URL

http://doi.acm.org/10.1145/320248.320255.

[34] G. R. Hjaltason and H. Samet. Distance browsing in spatial databases. ACM Transactions on

Database Systems (TODS), 24(2):265–318, 1999.

[35] B. Hugueney. Adaptive segmentation-based symbolic representations of time series for better

modeling and lower bounding distance measures. In European Conference on Principles of

Data Mining and Knowledge Discovery, pages 545–552. Springer, 2006.
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