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Abstract

Latent variable models are used extensively in unsupervised learning within the
Bayesian paradigm, these include (but are not limited to) mixture models which can be
used for clustering, and linear Gaussian models which can be used for dimensionality
reduction. Clustering aims to find some underlying groups within a data set, where
data points that belong to the same group (also called a cluster) are more ‘similar’ to
one another than data points that belong to different groups. Dimensionality reduction
aims to reduce the dimension of a data set while minimising some information loss, for
example, if two data points are relatively ‘close’ to one another in the observed data
space, then they should also be relatively ‘close’ in the reduced dimension data space.

The Bayesian paradigm offers rules for learning from data and integrating out un-
certainty, however, it can be a curse within latent variable models. For example, any
misspecification of the likelihood within a mixture model will result in incorrect clus-
tering. To combat this, we propose novel techniques to assist latent variable models to
learn meaningful information.

We first propose a mixture model for clustering and density estimation of count
data, which unlike other mixture models from the exponential family of distributions
does not make a strong a-priori assumption on the dispersion of the observed data.
The proposed model uses a mixture of Panjer distributions, which learns the dispersion
of the observed data in a data-driven manner; we call this the Panjer mixture model.
We study practical inference with the Panjer mixture model and propose an efficient
maximisation-maximisation scheme for training the Panjer mixture model and demon-
strate its utility on different data sets.

We propose an approach that aims to robustify the likelihood of a model with re-
spect to any likelihood misspecification. Unlike the vast existing work, the proposed
model is not an attempt to infer the parameters of a model in a robust manner, but it
aims to learn the correct data-generating distribution. This is done by using pseudo-
points in the data space which have an empirical density that is ‘close’ to the true data
generating density; this is done using a statistical distance called the maximum mean
discrepancy, which compares the summary statistic(s) between two distributions using
the reproducing kernel Hilbert space (RKHS). The proposed model is applied to mixture
models where each component is represented using pseudo-points. The advantage of
the proposed mixture model is demonstrated on a variety of data sets.

We also propose two discrete-continuous latent feature models which can be used
for dimensionality reduction to assist in tasks such as exploratory analysis, pre-
processing, data visualisation, and related tasks. A constrained feature allocation prior
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is placed on the discrete component of the proposed models; we call these the adaptive
factor analysis model and the adaptive probabilistic principal component analysis model.
We also derive efficient inference schemes for each model. The usefulness of the pro-
posed models is demonstrated in tasks such as feature learning, data visualisation, and
data whitening using different data sets.

Bayesian nonparametric priors assume that the parameter space is infinite, this al-
lows for flexible modelling, for example, the Dirichlet process (DP) can be used in mix-
ture models to learn the number of clusters in a data-driven manner. However, the
existing discrete Bayesian nonparametric priors assume that the latent space is discrete.
We propose two novel discrete Bayesian nonparametric priors which generalise exist-
ing Bayesian nonparametric priors such as the beta-Bernoulli process, we call these the
discrete marked beta-binomial process, and the marked beta-negative-binomial process.
Furthermore, marginal processes for special cases of the proposed processes have also
been derivedwhich allow for efficient sampling; we call this themulti-scoop Indian buffet

process and the infinite-scoop Indian buffet process.
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Chapter 1

Introduction

Unsupervised learning is a type of learning which discovers patterns from unlabelled

data; where the term pattern is used loosely as it depends on the modelling goal. In this

thesis, we primarily focus on two different techniques of unsupervised learning. The

first technique we focus on is clustering which in summary can be described as finding

some underlying groups of a data set, where data points that belong to the same group

(or cluster) are more ‘similar’ to one another than data points that belong to different

groups. An example of clustering can be grouping customers (also called segmenting)

by their spending habits [1]. The second technique this thesis focuses on is dimen-

sionality reduction which can be summarised as reducing the dimension of a data set

while minimising some ‘information loss’; for example, one may want to maximise the

variance from the observed data set and its dimensional reduced counterpart. This has

many applications such as data visualisation, for example visualising (for exploratory

data analysis) 784-dimensional data in a two-dimensional plot [2].

These methods can be applied in several ways, for example, the K-means cluster-

ing algorithm [3] which is the most popular clustering algorithm uses a deterministic

approach that minimises the distance between data points and cluster centroids. These

methods can also be applied with methods from Bayesian statistics which proved a num-

ber of added benefits such as incorporating prior knowledge. Many of the unsupervised

learning problems are solved using latent variable models which assume that there exist

some unobserved (latent) variables that generated the observed data points; for example,

10



these latent variables can represent clusters.

However, these latent variable models suffer from assumptions made about the

model. For example, the factor analysis model assumes that factors are constructed

using all data points, this can often lead to learning global structure over local structure

[4]. In this thesis, we propose to enhance existing latent variable models to extract more

meaningful information from data.

1.1 Contributions

This thesis makes the following contributions:

• We derive a generalised mixture model for clustering and density estimation of

count data: Panjer mixture model which is generalisation of models such as bino-

mial mixture model, Poisson mixture model and negative-binomial mixture model

etc. The additional benefit of the proposed model is that it makes no assumption

about the dispersion of the data, which results in better density estimation and by

extension clustering.

• We propose an approach that aims to robustify a model with regards to any likeli-

hood misspecification: maximum mean discrepancy pseudo-point marginal which

uses pseudo-points in the data space to represent the likelihood using the maxi-

mummean discrepancy (MMD).TheMMD is used to evaluate the likelihood of an

observation given the pseudo-points by comparing the summary statistic(s) be-

tween the two using the reproducing kernel Hilbert space (RKHS). The proposed

model is applied to mixture models, where each mixture component has its own

set of pseudo-points. Experiential results suggest that the proposed model works

well even if the mixture components overlap in the Euclidean space.

• We derive two discrete-continuous latent featuremodels which can be used for ex-

ploratory analysis, pre-processing, data visualisation, and related tasks: adaptive

factor analysis model and the adaptive probabilistic principal component analysis

A.Farooq, PhD Thesis, Aston University 2022 11



model. Existing methods tend to employ beta-Bernoulli priors which couple the

feature frequency with the portion of total variance which leads to having a small

number of data points being represented by all features; and a large number of

data points being represented by a small number of features [5]. We propose an

alternative approach that allows for better control over the feature to data point

allocation. This new approach is based on the multivariate hypergeometric dis-

tribution which is a two-parameter discrete distribution that decouples feature

sparsity and dictionary size, hence capturing both common and rare features in a

parsimonious way.

• We propose two Bayesian nonparameteric processes: the discrete marked beta-

binomial process & its marginal the multi scoop Indian buffet process for efficient

sampling, and the marked beta-negative-binomial process & its marginal the infi-

nite scoop Indian buffet process. Both of these models extend the latent space to

consist of counts, this work builds upon the works done by [6, 7] and extends the

marginal process called the Indian buffet process proposed in [8].

1.2 Thesis organisation

This thesis is organised in the following way:

• In Chapter 2 we give a broad overview of Bayesian modelling and probabilistic

mixture models. We also review two of the most common priors used in discrete

Bayesian nonparametrics: Dirichlet process and the beta-Bernoulli process. These

will be used throughout this thesis.

• In Chapter 3 we derive the generalised mixture model for clustering and density

estimation of count data. We also propose two different schemes to infer the pa-

rameters: (1) Expectation-maximisation (EM), and (2)Maximisation-maximisation

(MM). Finally, the proposed mixture model is compared with three other mixture

models using three different data sets using two criteria: (1) Density estimation,

and (2) Clustering accuracy.
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• In Chapter 4 we first investigate the problems one can face if the likelihood is

misspecified. We then derive an approach that can robustify a likelihood to any

likelihood to misspecification; we do this by representing the likelihood using

pseudo-points via MMD which is then applied to a mixture model setup. We

demonstrate the superior clustering of the proposed model when compared to

existing methods which aim to solve the same misspecification problem.

• In Chapter 5 we investigate how exiting discrete-continuous latent feature models

fail to capture the underlying feature allocation due to their priors. We then pro-

pose two novel discrete-continuous latent feature models which decouple feature

sparsity and dictionary size. A Gibbs and EM scheme is proposed to infer all the

parameters of the models; this includes an efficient (and practical) approach to

infer over the Stiefel manifold. We demonstrate how well the proposed models

work in different applications; this includes visualising hand-written digit images

and discovering brain activity from fMRI data.

• In Chapter 6 we extend the existing works done in Bayesian nonparameteric by

proposing two novel processes that do not confine the latent space to be binary;

where the discrete marked beta-binomial process assumes that the latent space is

discrete but has an upper bound (like the binomial distribution), and the marked

beta-negative-binomial process assumes that the latent space is discreet but have

no upper bound (like the negative-binomial distribution). We discuss how sam-

pling from the process can be strenuous, and therefore show how the marginal

processes offer a simpler alternative to sampling from their respective processes.

• In Chapter 7 we summaries all the previous chapters, and discuss the future di-

rections of the work presented in this thesis.
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Chapter 2

Bayesian nonparametrics

This chapter will introduce concepts that will be used in the other chapters of this the-

sis. This chapter does not aim to give a detailed induction, but it aims to give a broad

introduction to various concepts such as Bayesian statistics.

2.1 Bayesian

Bayesian statistics is designed to integrate over uncertainty. The cornerstone of the

Bayesian framework is Bayes’ theorem [9]:

posterior ∝ prior × likelihood,

where the prior encapsulates any beliefs about a phenomenon in the absence of any data,

the likelihood describes the probability of observing data, and the posterior describes the

updated beliefs about a phenomenon given the data. Generally speaking, θ represents

some unobserved parameter within a model that describes a phenomenon, then given

some observed data one can learn θ in a coherent way.

More formally let {yn}Nn=1 ∈ Y be N observed data points in some data space Y

that have been sampled from some distribution parameterised by θ. In the Bayesian

paradigm the unobserved parameter θ is treated as a random variable, which given some

data has a posterior distribution that is a product of two probability distributions: (1)

14



The prior distribution P (θ) which encapsulate any beliefs about θ in the absence of any

data and (2) The likelihood P
{
yn}Nn=1|θ

)
of observing N data points {yn}Nn=1 given θ.

The posterior distribution of θ is:

P
(
θ|{yn}Nn=1

)
=

P (θ) P
(
{yn}Nn=1|θ

)

P ({yn}Nn=1)
, (2.1)

where P
(
{yn}Nn=1

)
is the normalising constant (also called the marginal distribution).

2.1.1 Exponential family of distributions

The exponential family of distributions [10] is a family of distributions which have a

probability mass function (PMF) or probability density function (PDF) take the following

form:

P (y|θ) = exp (η (θ)T (y)− A (η (θ)) + C (y)) , (2.2)

where θ is the distributional parameter, η(·) is the natural parameter, T (·) is the suffi-

cient statistic, A (·) is the log-partition and C (·) is the log-base measure. It should be

noted that equation (2.2) only shows the univariate case.

The Bernoulli distribution is one example of the exponential family of distributions.

Let y ∈ {0, 1} be a draw from a Bernoulli distribution with success probability p ∈ [0, 1],

then:

y|p ∼Bernoulli (p) ,

P (y|p) =py (1− p)1−y

= exp
(

y ln
(

p

1− p

)

+ ln (1− p)

)

= exp (η (θ)T (y)− A (η (θ)) + C (y)) ,

where the distributional parameter θ = p, the natural parameter η(θ) = ln
(

p

1−p

)

,

the sufficient statistic T (y) = y, the log-partition A (η(θ)) = − ln (1− p) =

− ln (1 + exp (θ)), and the log-base measure C (y) = 0.
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Conjugacy

Computing the posterior distribution P
(
θ|{yn}Nn=1

)
is often difficult as the normalising

constant from equation (2.1) P
(
{yn}Nn=1

)
=
∫
P
(
{yn}Nn=1|θ

)
P (θ) dθ is often not avail-

able in closed form. This can be avoided if the prior and likelihood distributions both

have the same functional form with respect to the distributional parameter θ; this is

called conjugacy which is guaranteed for the exponential family of distributions.

Beta-Bernoulli: The beta distribution is the conjugate prior to the ‘success’ parameter

in the Bernoulli distribution. Let p ∈ [0, 1] be the ‘success’ parameter of the Bernoulli

distribution. The beta distribution is placed as a prior on the parameter p:

p|α, β ∼ Beta (α, β) ,

P (p|α, β) = pα−1 (1− p)β−1

B (α, β)
,

where B (α, β) = Γ(α)Γ(β)
Γ(α+β)

is the beta function, Γ (·) is the Gamma function, and {α, β}

are some hyper-parameters which encapsulate any belief on p in the absence of any

data. The observations {yn}Nn=1 are independently and identically (i.i.d.) sampled from

a Bernoulli distribution, which would result in the likelihood:

{yn}Nn=1|p
i.i.d.∼ Bernoulli (p) ,

P
(
{yn}Nn=1|p

)
=

N∏

n=1

pyn (1− p)1−yn

∝p
∑

n yn (1− p)N−
∑N

n=1 yn .

Which results in the posterior distribution:

P
(
p|{yn}Nn=1, α, β

)
∝P (p|α, β)× P

(
{yn}Nn=1|p

)

∝pα−1 (1− p)β−1 × p
∑N

n=1 yn (1− p)N−
∑N

n=1 yn

∝pα+
∑N

n=1 yn−1 (1− p)β+N−
∑N

n=1 yn−1 ,

p|{yn}Nn=1, α, β ∼Beta
(

α +
N∑

n=1

yn, β +N −
N∑

n=1

yn

)

,
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which is still a beta distribution.

Gaussian-Gamma-Gaussian: The Gaussian-Gamma1 [11] distribution is the conju-

gate prior to the mean and precision (inverse of the variance) parameter in the Gaussian

distribution. Let µ and λ be the mean and precision parameters of the Gaussian distri-

bution. The Gaussian-Gamma distribution is placed as a prior on the parameters µ and

λ:

µ, γ|µ0, λ0, α0, β0 ∼ NG (µ0, λ0, α0, β0) ,

λ|α0, β0 ∼ G (α0, β0) ,

µ|µ0, λ0, λ ∼ N
(
µ0, (λ0λ)

−1) ,

P (µ, λ|µ0, λ0, α0, β0) =
βα0
0

√
λ0√

2πΓ (α0)
λα0−

1
2 exp−1

2

(
λ0 (µ− µ0)

2 + 2β0

)
,

where G (·) is the Gamma distribution, N (·) is the Gaussian distribution, and

{µ0, λ0, α0, β0} are some hyper-parameters which encapsulate any belief on µ and λ

in the absence of any data. The observations {yn}Nn=1 are i.i.d. samples from a Gaussian

distribution, which would result in the likelihood:

{yn}Nn=1|µ, λ
i.i.d.∼ N

(
µ, λ−1

)

P
(
{yn}Nn=1|µ, λ−1

)
∝

N∏

n=1

√

λ

2π
exp

(

−λ

2
(yn − µ)2

)

=

(
λ

2π

)N/2

exp
(

−λ

2

N∑

n=1

(yn − µ)2
)

,

which results in the posterior distribution:

P
(
µ, λ|{yn}Nn=1, µ0, λ0, α0, β0

)
∝P (µ, λ|µ0, λ0, α0, β0)× P

(
{yn}Nn=1|µ, λ

)

∝
√
λ exp

(

−λ0λ (µ− µ0)
2

2

)

λα0−1 exp (−β0λ)

× λ
N
2 exp

(

−λ

2

N∑

n

(yn − µ)2
)

,

1 Also called the Normal-Gamma distribution
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which results in:

µ, λ|{yn}Nn=1, µ0, λ0, α0, β0 ∼NG (µN , λN , αN , βN) ,

µN =
λ0µ0 +Nȳ

λ0 +N
,

λN =λ0 +N ,

αN =α0 +
N

2
,

βN =β0 +
1

2

N∑

n=1

(yn − ȳ)2 +
λ0N (ȳ − µ0)

2

2 (λ0 +N)
,

ȳ =
1

N

N∑

n=1

yn,

which is still a Gaussian-Gamma distribution; see [12] for the full derivation.

2.1.2 Finite mixture models

Mixture models provide an important framework in decomposing complex multi-modal

distributions into a mixture of simpler distributions. A common application of this is

clustering, where each mixture component represents a distinct cluster [13]; the total

number of which are fixed to K . Each component has some mixing weight πk, this

weight is often interpreted as the prior probability of an observation being generated

by the kth component, which is sampled from the Dirichlet distribution:

π1, . . . , πK |α1, . . . , αK ∼ Dirichlet (α1, . . . , αK) ,

where {αk}Kk=1 are some positive hyper-parameters. The parameters of each k compo-

nent is sampled form some distribution H :

{θk}Kk=1 ∼ H .

If conjugacy is desired, then H is chosen depending on the likelihood of the data. Each

observation yn (where n ∈ {1, . . . , N}) is independently and identically generated in
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the following way:

cn ∼Categorical (π1, . . . , πN) ,

yn|cn, θcn ∼Fθcn
,

where cn ∈ {1, . . . , K} indicates which one of theK mixture component generated the

nth observation and Fθ is some distribution parameterised by θ. Setting H to be a con-

jugate prior to the likelihood F(·) is a natural choice within the Bayesian paradigm. For

example, in a mixture of univariate Gaussian’s, Fθk would be a Gaussian distribution,

θk = {µk, λk} would be a collection of mean and precision (inverse of the variance)

parameters and a natural choice for H would be the Gaussian-Gamma distribution.

Thewhole mixture model is redistricted toK mixture components;K can be known

using some a-prior knowledge or using other diagnostics such as Bayesian information

criterion [14]. However, fixingK may become problematic when more data is observed

as it may require the number of mixture components to grow. This motivates us to pro-

pose a more flexible set of models which grow in complexity2 as more data is observed,

this is known as Bayesian nonparameterics.

2.2 Bayesian nonparameterics

From the previous section, we can see that the traditional Bayesian paradigm treats the

parameter space as finite, hence the prior (and the subsequent posterior) are defined on

some finite space. The Bayesian nonparametrics (BNP) paradigm treats the parameter

space as infinite, which requires one to use a prior (and subsequent posterior) that is

defined on some infinite-dimensional space; which is the path of a stochastic process.

Two of the most common discrete stochastic processes used in BNP are the Dirichlet

process (DP) [15] and the Beta process [16]; both of which are covered in the sections

below.

2 In terms of the number of parameters which is a result of more number of components.
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2.2.1 Dirchlet process

Definition

The gamma process is a positive Lévy process with a Lévy measure that depends on two

parameters: a positive function α (·) (called concentration function3) over some space

Ω and a base measure H0 also defined on the space Ω [6]. Given that the base measure

H0 is continuous, the Lévy measure of the process is:

ν (dθ, dπ) = α (θ) π−1 exp (−α (θ) π) dπH0 (dθ) ,

on the space Ω × [0,∞), which with respect to θ is a degenerate gamma distribution

[6], hence the name gamma process. Draws from the gamma process are discrete and

can be represented as:

H =
∑

k

πkδθk , (2.3)

where the points (θk, πk) ∈ Ω×[0,∞) are draws from the process, an alternative way to

write this is H ∼ ΓP (α,H0). Let S ∈ Ω, then the total mass H (S) =
∑

j πjI (θj ∈ S);

where I (·) is an indicator function that equals to one if the argument inside is true,

otherwise it is zero.

Drawing samples from the Dirichlet process D ∼ DP (α,H0) [15] is equivalent to

normalising the samples from the gamma process, such that:

H|α,H0 ∼ ΓP (α,H0) ,

D =
H

H (Ω)
∼ DP (α,H0) ,

where it should be noted that the Dirichlet process is independent of the normalising

constant, i.e., D⊥H (Ω)

3 If α (·) is a constant then this is called a concentration parameter
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Dirichlet process mixture model

The DP is used in Bayesian nonparametric for an infinite Bayesian mixture model. Tra-

ditionally a Bayesian mixture model withK number of mixtures assumes the following

generative model:

π|α ∼ Dirichlet
( α

K
, . . . ,

α

K

)

,

{θk}Kk=1
i.i.d.∼ H ,

cn|π ∼ Categorical (π) ,

yn|cn, θ1,...,K ∼ Fθcn
,

where π = [π1, . . . , πK ] ∈ [0, 1]K be a K-dimensional vector; with
∑K

k=1 πk = 1 and,

α > 0 is a hyperparameter, {θk}Kk=1 are K parameters independently and identically

(i.i.d.) sampled from some distributionH , cn ∈ {1, . . . , K} is a variable which indicates

whichmixtures observation n ∈ {1, . . . , N} is sampled from and yn is some observation

sampled from some distribution Fθcn
; which is parameterised by θcn . This section will

explore how the marginal distribution of c1,...,N will behave as the number of clusters

K approach to infinite (i.e., K → ∞). The marginal distribution of c1,...,N for finite K

is:

P (c1,...,N |α) =
∫
(

N∏

n=1

P (cn|π)
)

P (π|α) dπ

=

∏K

k=1 Γ
(
mk +

α
K

)

Γ
(
α
K

)K
× Γ (α)

Γ (N + α)
,

where mk =
∑N

n=1 I (cn = k).

The marginal probability of c1,...,N does not depend on the order of the features [8]

i.e., classes are exchangeable [17]. This results in having multiple c1,...,N ’s which encode
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the same class assignments for several objects; an example of this can

P ([c1,...,N ] |α) =
∑

c1,...,N∈[c1,...,N ]

P (c1,...,N)

=
K!

K0!

( α

K

)K+

(
K+
∏

k=1

mk−1∏

i=1

(

i+
α

K

)
)

Γ (α)

Γ (N + α)
,

and as K →∞, the above becomes:

lim
K→∞

(P ([c1,...,N ] |α)) = αK+

(
K+
∏

k=1

(mk − 1)!

)

Γ (α)

Γ (N + α)
.

Construction

Chinese restaurant process: The Chinese Restaurant Process (CRP) [15, 18] is a

marginal representation of the infinite Dirichlet-categorical [19]. This process is often

explained using a cuisine metaphor, hence the name. Let there exist a Chinese restau-

rant with an infinite number of tables. The first customer enters the restaurant and takes

a seat at the first table. Then the second customer enters, they take a seat at the first

table with probability 1
α+1

, and the second table with probability α
α+1

. In general, the

nth customer will take a seat on table k with probability mk

α+n
; where mk is the number

of customers at table k, or take a seat at a new (unoccupied by the other (n − 1)th

customers) with probability α
α+n

.

2.2.2 Beta-Bernoulli Process

Definition

Beta process: The beta process [16] is a positive Lévy process with a Lévy measure ν

that depends on two parameters: a positive function α (·) (called concentration func-

tion4) over Ω, and a fixed base measure H0 defined on the space Ω [6]. Given that the

4 If α (·) is a constant then this is called a concentration parameter
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Figure 2.1: A plot of different class allocation. Both (a) and (b) are different but they
both encode the same information; objects 1, 2 & 4 are grouped together and
objects 3, 5 & 6 are grouped together.
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base measure H0 is continuous, the Lévy measure of the process is:

ν (dθ, dπ) = α (θ) π−1 (1− π)α(θ)−1
dπH0 (dθ) ,

on the space Ω × [0, 1], which with respect to θ is a degenerate beta distribution [6];

hence the name beta process. Draws from the beta process are discrete and can be

represented as:

H =
∑

k

πkδθk , (2.4)

where the points (θk, πk) ∈ Ω × [0, 1] are draws from the process, an alternative way

to write this isH ∼ BP (α,H0). In the context of latent feature models the pair (θk, πk)

can be viewed as:

• θk ∈ Ω represents the location for the feature k

• πk ∈ [0, 1] represents the weight associated with feature k, i.e. the probability

that an object will ‘posses’ the kth feature is πk

See [6, 20] for a more in-depth introduction of the Beta process.

Bernoulli process: The Bernoulli process is a positive Lévy process with a Lévy mea-

sure:

λ (dθ, dπ) = δ1 (dπ)H (dθ) ,

where H (from equation (2.4)) is a hazard measure on the space Ω [6]. Assuming the

hazzard measure is a collection of infinite points H =
∑

k πkδθk , then the draws from

the Bernoulli process can be represented as:

Bn =
∑

k

bnkδθk ,

where the points (θk, bnk) ∈ Ω×{0, 1} are drawn from the process, an alternative way

to write this is Bn ∼ BeP (H). It should be noted that the points bnk are independent

Bernoulli variables with πk representing the probability of bnk = 1.
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Conjugacy: It is well known that the beta distribution is conjugate to the Bernoulli

likelihood, and likewise, it has been shown by [6] that the beta process is conjugate to

the Bernoulli process. Let H ∼ BP (α,H0) and let Bn ∼ BeP (H) for n ∈ {1, . . . , N}

be N independent samples from the Bernoulli process (with hazard measure H), then

the posterior update on H is still a beta process:

H|B1,...,N ∼ BP (α +N,HN) ,

where HN =
α

α +N
H0 +

∑

j

nj

α +N
δθj ,

where nj =
∑

n bnj is the number of times in which the atom at location θj appears in

B1,...,N [6].

In the context of latent feature models, one can interpret Ω as being the space of all

features, and Bn as an object defined by the features it possess, where the pair (θk, bnk)

corresponds to Bn possessing feature θk if bnk = 1 and not possessing feature θk if

bnk = 0. This information can be represented in a binary matrix Z with N rows to

represent the N independent draws from the Bernoulli process and infinite columns to

represent the infinite atoms from the beta process:

Z =












1 0 1 1 · · ·

0 0 1 0 · · ·
... ... ... ... . . .

1 0 1 1 · · ·












. (2.5)

Distribution of infinite binary matrices

Finite: Using both the beta and Bernoulli distribution [8] derived the probability dis-

tribution over an infinite sparse binary matrix (like the one in equation (2.5)). Let

π = [π1, . . . , πK ] be a K-dimensional vector; where πk ∈ [0, 1] ∀k. The prior distri-

bution over πk is the Beta distribution:

πk|α ∼ Beta
( α

K
, 1
)

,
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where α > 0 is a hyperparameter. Let Z be a (N ×K) where each element znk is

independently and identically (i.i.d.) sampled from a Bernoulli distribution:

znk|πk ∼ Bernoulli (πk) ,

where n ∈ {1, . . . , N}, and k ∈ {1, . . . , K}. From a latent feature perspective znk = 1

can be interpreted as object n possessing feature k. The marginal likelihood of Z is:

P (Z|α) =
K∏

k=1

∫
(

N∏

n=1

P (znk|πk)

)

P (πk|α) dπk

=
K∏

k=1

α
K
Γ
(
mk +

α
K

)
Γ (N −mk + 1)

Γ
(
N + 1 + α

K

) ,

where mk =
∑N

n=1 znk.

Equivalence Classes: Themarginal probability of the binarymatrixZ does not depend

on the order of the features [8] i.e., features are exchangeable. This results in having

multiple binarymatricesZwhich encode the same feature assignments for a few objects;

an example of this can be seen in Figure 2.2.

To consider the same feature assignments over different feature arrangements, [8]

propose to use a left-ordered from function lof (·) which maps a binary matrix to its

left-ordered form (see Figure 4 in [8]). This function works by ordering the columns

of the matrix by the history of the columns, which ensures that the nth row is more

significant than the (n+ 1)th row. The history for column k can be calculated using the

following:

Hk =
N∑

n=1

2N−nznk, (2.6)

where Hk denotes the history for column k. Then the cardinality of [Z] = K!
∏2N−1

h=0 Kh!
is

the number of matrices that map to the same left-ordered form; where Kh denotes the

number of columns with history h.
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Infinite binary matrix: By using the methods from above, the marginal probability of

lof-equivalent class of binary matrices [Z] is:

P ([Z] |α) =
∑

Z∈[Z]

P (Z|α)

=
K!

∏2N−1
h=0 Kh!

K∏

k=1

α
K
Γ
(
mk +

α
K

)
Γ (N −mk + 1)

Γ
(
N + 1 + α

K

) .
(2.7)

The number of columnsK on the matrix Z consists of two parts: the first part is theK0

number of columns with zeros i.e., mk = 0, and the second part is the K0 number of

columns with non-zeros i.e., mk > 0. Therefore, the marginal in equation (2.7) can be

re-written as:

P ([Z] |α) =
∑

Z∈[Z]

P (Z|α)

=

[

K!
∏2N−1

h=0 Kh!

]

×





(

N !
∏N

j=1

(
j + α

K

)

)K


× . . .

· · · ×
[( α

K

)K+
]

×
[

K+∏

k=1

(N −mk)!
∏N

j=1

(
j + α

K

)

N !

]

,

and as K →∞, the above becomes:

lim
K→∞

(P ([Z] |α)) =
[

αK+

∏2N−1
h=1 Kh!

]

× [exp (−αHN)]×
[

K+∏

k=1

(N −mk)! (mk − 1)!

N !

]

,
(2.8)

whereHN =
∑N

j=1
1
j
; also known as theN th harmonic number, andK+ is the number

of columns of Z where mk > 0. An alternative view of the equation (2.8) is the proba-

bility of observing a matrix that stores draws from the beta-Bernoulli process (like the

one in equation (2.5)).

Construction

The Indian Buffet Process (IBP): The Indian Buffet Process (IBP) [8] is a marginal rep-

resentation of the beta-Bernoulli process [6]. This process is often explained using a
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cuisine metaphor of an Indian buffet with an infinite number of dishes, hence the name.

The first customer enters the buffet and takes a serving from each dish till they stop at

the Poisson (α) numbered dish. Then the second customer enters, they move along the

buffet selecting the kth dish with probability mk

2
; wheremk are the number of customers

who have tried dish k. After reaching the end of all previously chosen dishes the second

customer tries a Poisson
(
α
2

)
number of new dishes. In general, the nth customer will

go along the buffet selecting dishes, the probability of selecting the kth dish would mk

n
,

and then at the end, they try Poisson
(
α
n

)
number of new dishes.

The results of the IBP can be represented using a binary matrix Zwhich hasN rows

(afterN number of customers have entered the buffet) an infinite number of columns (as

the buffet has an infinite number of dishes). If the nth customer tried the nth dish then

znk = 1. The probability of a single lof-equivalent class of binary matrices [Z] generated

from the IBP is:

P ([Z] |α) =
∑

Z∈[Z]

P (Z|α)

=

[

αK+

∏2N−1
h=0 Kh!

]

× [exp (−αHN)]×
[

K+∏

k=1

(N −mk)! (mk − 1)!

N !

]

.
(2.9)

Both equation (2.8) and equation (2.9) are the same, this implies that there is an underly-

ing relationship between the IBP and the beta-Bernoulli process; the scope of this report

is not to examine this exact relationship, see [6] for more details on this relationship.
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Chapter 3

Generalised mixture model to cluster

count data

Count data appears in many different domains such as (but not limited to) insurance

[21], crime [22], single cell RNA-seq [23–27], document modelling [28, 29]. This is often

modelled using distributions from the exponential family of distributions such as the

binomial distribution, the Poisson distribution, and the negative-binomial distribution;

where the Poisson distribution is a limiting case of the other two. The simple infer-

ence of these distributions and computational efficiency comes at the price of strong

assumptions about the skewness and dispersion of the probability distributions. Dis-

persion can be characterised into three categories [30], underdispersed when the mean

is greater than the variance, equidispersed when the mean and variance are equal, and

overdispersed when the mean is less than the variance. Each category can be modelled

using a different distribution, for example, the binomial distribution assumes the data

is underdispersed, the Poisson distribution assumes the data is equidispersed, and the

negative-binomial distribution assumes the data are overdispersed.

Mixture models on count data provide an important probabilistic framework for

decomposing complex distributions into a mixture of simpler components, where each

mixture component can be used to represent a distinct cluster [13]. This is whymixtures

of binomial, Poisson, and negative-binomial distributions are used in many different ap-

30



plications [31–34]. However, each component will still assume on the dispersion of the

data; this is particularly harmful as one cannot statistically assess which distribution is

best for which component. For example, if the data are overdispersed then the mixtures

of Poisson distributions would not correctly model the data, i.e., the estimated density

would be different from the observed density, and a model selection criterion like the

Bayesian information criteria (BIC) [14] would encourage more number of clusters than

what is actually present in the data.

It is common to alleviate the difficulty of dealing with discrete random variables by

using amortised continuous approximations [35]. However, this can somewhat limit

the interpretability of individual components or branches of your graphical model. Fur-

thermore, sampling from a continuous approximation of a discrete random variable can

have identifiability issues.

3.1 Discrete distributions

This section will highlight the different distributions one can use to model count data.

Binomial distribution

The binomial distribution is a probability distribution which models the number of ‘suc-

cesses’ inm number of independent experiments; where each experiment can either be

a success (with probability p ∈ [0, 1]) or a ‘failure’1 (with probability 1− p) such that:

y|m, p ∼binomial (m, p) ,

P (y|m, p) =

(
m

y

)

(ρ)y (1− ρ)m−y ,
(3.1)

where
(
m

y

)
= m!

y!(m−y)!
and y ∈ {0, . . . ,m}. The mean and variance of which are:

mean (y) = mρ,

variance (y) = mp (1− p) .

1 Often referred to as not a success.
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The Bernoulli(p) distribution is a special case of the binomial(m, p) distribution

when m = 1.

Poisson distribution

The Poisson distribution is a probability distribution that models the counts of an event

occurring over a fixed time, for example, the number of people entering a building each

hour such that:

y|λ ∼Poisson (λ) ,

P (y|λ) =λy

y!
exp (−λ) ,

where y ∈ {0, 1, 2, . . . }. The mean and variance of which are:

mean (y) = λ,

variance (y) = λ.

Negative-binomial distribution

The negative-binomial distribution is a probability distribution that models the number

of ‘successes’ after r number of ‘failures’2; this is similar to the binomial distribution,

except that instead of fixing the number of experiments, the number of failures is fixed.

Like the binomial distribution, the probability of success is p ∈ [0, 1] and the probability

of a failure is 1− p such that:

y|r,m ∼negative− binomial (r, p) ,

P (y|r, p) =
(
r + y − 1

y

)

(1− p)r (p)y ,
(3.2)

2 Or none successes.
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where y ∈ {0, 1, 2, . . . }. The mean and variance of which are:

mean (y) = rρ

1− p
,

variance (y) = rp

(1− p)2
.

The Geometric(p) distribution is a special case of the negative-binomial(r, p) distribu-

tion when r = 1.

Poisson-shifted generalised inverse Gaussian

ThePoisson distribution can be extended intomany other distributions such as the Sichel

distribution [36], Poisson-shifted inverse Gaussian distribution [37], the Delaporte dis-

tribution [38] and the Poisson-shifted exponential [39]; all of these can be generalised

by the Poisson-shifted generalised inverse Gaussian (PSGIG) distribution [39]. The PS-

GIG is derived by first assuming that the data y is sampled from a Poisson distribution

parameterised by λγ such that:

y|λ, γ ∼Poisson (λγ) ,

P (y|λ, γ) =(λγ)y

y!
exp (−λγ) ,

where λ > 0, and γ > 0 is defined as some “random effect” [39]. A generalised inverse

Gaussian (SGIG (α, β, τ )) [36] prior is placed on the random effect variable γ:

P (γ|α, β, τ ) = hβ (γ − τ)β−1

2Kβ

(
1
α

) exp
[

− 1

2α

(

h (γ − τ) +
1

d (γ − τ)

)]

, for γ > τ ,
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where α > 0, β ∈ R, τ ∈ [0, 1), and:

h =
c

(1− τ)
,

c =Rβ

(
1

α

)

,

Rβ (x) =
Kβ+1 (x)

Kβ (x)
,

Kβ (x) =
1

2

∫ ∞

0

tβ−1 exp
(

−1

2
x
(
t+ t−1

)
)

dt.

The marginal (with respect to γ) of which results in the PSGIG distribution [39]:

P (y|λ, α, β, τ ) =
∫

P (y|λ, γ) P (γ|α, β, τ ) dγ

=
exp (−λτ)
Kβ

(
1
α

) ×
y
∑

j=0

(
y

i

)
λyτ y−iKβ+i (δ)

y!hi (δα)β+i
,

where:

δ =

(

α−2 +
2λ

hα

)1/2

,

which is a generalisation of:

• The Sichel distribution [36] if τ = 0 [39]

• The Poisson-shifted inverse Gaussian distribution [37] if β = −1
2
and τ = 0 [39]

• The Delaporte distribution [38] if β > 0 as α → ∞ which is a generalisation of

the Poisson-shifted exponential [39]

Conway–Maxwell–Poisson distribution

The Conway–Maxwell–Poisson (COM-Poisson) distribution [30] is a two-parameter

generalisation of the Poisson distribution which does not restrict the dispersion of the

data, the PMF of the COM-Poisson(λ, ν) distribution takes the following form:

P (y|λ, ν) = λy

(y!)ν
1

Z (λ, ν)
, (3.3)
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where:

Z (λ, ν) =
∞∑

j=0

λj

(j!)ν
,

where λ > 0 and ν ≥ 0. When compared to the Poisson distribution, the additional ν

parameter of the COM-Poisson allows for modelling underdispersed data (when ν > 1),

equidispersed data (ν = 1), and overdispersed data (ν < 1). The normalising constant

Z (λ, ν) of the COM-Poisson cannot be evaluated when ν ̸= 1; this requires additional

approximations when evaluating the PMF. [40] describes an asymptotic formula to ap-

proximate the normalising constant; this only works when λ > 10ν , other numerical

approximations of the normalising constant have some relative error associated with

them too; these approximations must also be used when evaluating the sufficient statis-

tics of the COM-Poisson distribution. Likewise, approximations must be used to learn

the parameters of the COM-Poisson; [41] details various methods. One benefit of the

COM-Poisson distribution is that it’s a generalisation of other well-known distributions:

• If ν = 1 and λ < 1 then the COM-Poisson(λ, ν) is equivalent to the Geometric(1−

λ) distribution.

• If ν = 1 then the COM-Poisson(λ, ν) is equivalent to the Poisson(λ) distribution.

• If ν →∞ then the COM-Poisson(λ, ν) is equivalent to the Bernoulli( λ
λ+1

) distri-

bution.

3.2 Panjer distribution

Panjers’ recursion

Let S =
∑N

n=1 Xn be a sum of N ∈ N0 independent random variables Xn ∈ N0;

where n ∈ {1, . . . , N}, andN is independent to {Xn}Nn=1. The PMF of the compounded
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random variable S ∈ N0 is [42]:

P (S = s) =







g0 if s = 0

∑∞

n=1 gnf
n∗ (s) if s > 0

, (3.4)

where gi = P (N = i), and fn∗ (s) is the nth convolution of some density f (·) which

is used to evaluates the probability of Xn. Panjer [43] proposed a recursive formula to

overcome the computationally expensive convolution in equation (3.4) if random vari-

able N is sampled from the Panjer family of distributions:

P (s|a, b) =
(

a+
b

y

)

P (s− 1) , (3.5)

where s > 0, {a, b} ∈ R such that a + b ≥ 0 and P (0) = 1 −∑∞

s=1 P (s). The Pan-

jer family (denoted as Panjer(a, b, 0)) of distributions consists of distributions like the

binomial distribution, the Poisson distribution, the negative-binomial distribution, and

many more. The main purpose of the Panjer family of distributions is to check whether

the Panjer recursion can be applied or not, however, the striking connection between

various probability distributions is ignored, which motivates us to entirely focus on the

Panjer family of distributions.

Definition

The Panjer recursion can be generalised to Panjer(a, b, n), where the recursion from

equation (3.5) still applies except P (k) = 0 ∀k < n; see [44]. The Panjer(a, b, 0)

recursion probabilities and parameters can be written in a all-in-one formula called the

Panjer distribution [44], the Panjer distribution has the following PMF:

P (y|λ, η) =
(

1 +
λ

η

)−η
λy

y!

y−1
∏

i=0

η + i

η + λ
, (3.6)
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where y ∈ N0, λ > 0 and η ∈ {[−∞,−λ) ∪ (0,∞]} are distributional parameters. The

mean and variance of which are:

mean [y] = λ,

variance (y) = λ

(

1 +
λ

η

)

.
(3.7)

It can be argued that the exponential family consists of distributions like the bino-

mial distribution, the Poisson distribution, and the negative-binomial distribution and

therefore there is no need for the Panjer family (except for checking if Panjers’ recur-

sion is applicable) and by extension the Panjer distribution. However, it is not that

the binomial distribution belongs to the exponential family, but it is the binomial dis-

tribution with a known ‘number of trials’ (the m parameter from equation (3.1)) that

belongs to the exponential family. Likewise, it is not that the negative-binomial dis-

tribution belongs to the exponential family, but it is the negative-binomial distribution

with a known ‘number of failures until the experiment is stopped’ (the r parameter

from equation (3.2)) that belongs to the exponential family. These subtle changes in the

definitions of these distributions show that the special cases of these distributions are

unified within the exponential family of distributions; these special cases allow us to

utilise conjugacy for more efficient posterior updates on the parameters. However, the

exact distributions are only unified within the Panjer family using the Panjer distribu-

tion; this is explored in Appendix A.1. Therefore, unsurprisingly the Panjer distribution

does not belong to the exponential family (see Appendix A.2), but its special cases are;

i.e., binomial distribution with a known ‘number of trials’. The result of this is that we

cannot use conjugacy to update the posterior distribution of the parameters of the Panjer

distribution. However, the benefit of not having to confine the Panjer distribution into

the exponential family form is that the parameters of the distribution are flexible (i.e.,

not restricted to be within a certain domain; see Appendix A.1) which alleviates any

assumption on the dispersion of the data.
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Advantages of modeling using Panjer distribution

Probability distributions like the binomial distribution, the negative-binomial distribu-

tion, and Poisson distribution make a strong a-priori assumption on the dispersion of

the data; this is due to the coupling of the parameters when the mean and variance of

these distributions are evaluated. These restrictions could hinder the ability to correctly

model some data if the ‘true’ dispersion of the data is unknown. On the other hand, the

Panjer distribution does not restrict modelling of the data according to the dispersion

of the data i.e., the mean is independent of the variance.

The COM-Poisson distribution can also be used to model in a situation where the

‘true’ dispersion of the data is unknown as it can generalise distributions like the ge-

ometric distribution (for overdispersed data) and Bernoulli distribution (for underdis-

persed data). However, the Panjer distribution can also generalise distributions like the

geometric distribution (as it’s a special case of the negative-binomial distribution) and

the Bernoulli distribution (as it’s a special case of the binomial distribution). However,

approximations with relative error must be used to evaluate the PMF or the sufficient

statistics of the COM-Poisson distribution; this is because of the normalising constant of

the COM-Poisson (see equation (3.3)). On the other hand, the Panjer distribution does

not need any approximations when evaluating the PMF or sufficient statistics.

An experiment was conducted to demonstrate howwell the probability distributions

above can estimate the density of differed types (by dispersion) of data sets, three data

sets of size 1000 were generated: the first data set was underdispersed (generated us-

ing the binomial distribution), the second data set was equidispersed (generated using

the Poisson distribution) and the third data set was overdispersed (generated using the

negative-binomial distribution). The absolute difference between the estimated density

and the empirical density can be seen in Table 3.1, and a visualisation of the estimated

PMF and the histogram of the data can also be seen in Figure 3.1. Table 3.1 shows

that the Panjer distribution models binomial data the best, both the Panjer and Poisson

distribution model Poisson data the best, and both the Panjer and negative-binomial

distributions model the negative-binomial data the best; Figure 3.1 also reflect the same
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equation (3.6)). The data likelihood is:

P
(
{yn}Nn=1|λ, η

)
∝

N∏

n=1

[(

1 +
λ

η

)−η
λyn

yn!

yn−1
∏

i=0

η + i

η + λ

]

,

and the data log-likelihood is:

L ∝
N∑

n=1

[

−η ln
(

1 +
λ

η

)

+ yn ln (λ)− ln (yn!) +
yn−1
∑

i=0

(

ln
(
η + i

η + λ

))]

.

The maximum likelihood update for λ is λML = 1
N

∑N

n=1 yn; this is obtained by

differentiating the log-likelihood with respect to λ and setting it to zero (see Appendix

A.3 for the derivations). However, the maximum likelihood update for η is not available

in closed-form, this is because there is no closed-form solution of the derivative of the

log-likelihood with respect to η when set to zero; see Appendix A.3 for the derivations.

Therefore, the maximum likelihood solution for η solves the equation f (ηML) = 0

where:

f (η) = −N (ln (sgn (η) (λ+ η))− ln (sgn (η) η)) +
N∑

n=1

[
yn−1
∑

i=0

1

η + i

]

,

where sgn (·) is a sign function, such that:

sgn (x) =







−1 if x < 1

0 if x = 0

1 if x > 1

.

Empirical results suggest that iterative method like the Newton-Raphson method (ini-

tialised using method of moments (MOM) update) can learn ηML in a few iterations; the

MOM update is:

ηMOM =
mean

(
{yn}Nn=1

)2

variance ({yn}Nn=1)−mean ({yn}Nn=1)
,
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where mean
(
{yn}Nn=1

)
is the sample mean, and variance

(
{yn}Nn=1

)
is the sample vari-

ance.

3.3 Panjer mixture model

Let {yn}Nn=1 beN one-dimensional3 discrete observations sampled from a mixture ofK

Panjer distributions, such that the probability of some observation yn given all param-

eters is:

P (yn|θ) =
∑

k

πkP (yn|λk, ηk) , (3.8)

where θ = {λ1, . . . , λK , η1, . . . , ηK} contains all the parameters of the K Panjer distri-

butions and {πk}Kk=1 are the mixing weights; such that
∑K

k=1 πk = 1.

3.3.1 Inference

Two schemes are proposed to learn the parameters of the Panjer mixture model, both

schemes require K-dimensional latent variables {zn}Nn=1. Let the latent variable (or

cluster assignment) zn be a random variable that indicates whichmixture an observation

was sampled from; such that if znk = 1 then observation n was sampled from cluster

k. Additional constraints such as
∑K

i=1 zni = 1 are imposed on the latent variables and

P (znk = 1) = πk; where πk are the mixing weights from equation (3.8). Using the latent

variables, the probability of some observation yn given all parameters is:

P (yn|zn,θ) =
∏

k

P (yn|λk, ηk)
znk .

The first scheme to infer all the parameters is the expectation-maximisation (EM)

algorithm [45], this scheme iteratively switches between the E-step and the M-step:

• E-step: Take expectation of the latent variables {zn}Nn=1 with respect to the pos-

terior distribution.

3 This is done for notational convenience, see Appendix A.4 for a D-dimensional generalisation.
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• M-step: Maximise the complete data log-likelihood with respect to the other pa-

rameters.

This is repeated till convergence; the full algorithm is described in Appendix A.4.1.

An alternative to the EM algorithm is the maximisation-maximisation (MM) algo-

rithm (this is often called hard EM [45]), this scheme iteratively switches between the

M-step and the M-step:

• M-step: Maximise the complete data log-likelihoodwith respect to the latent vari-

ables {zn}Nn=1.

• M-step: Maximise the complete data log-likelihood with respect to the other pa-

rameters.

This is repeated till convergence; the full algorithm is described in Appendix A.4.2.

Both schemes still impose
∑K

i=1 zni = 1, but they differ on the domain of each znk;

the EM assumes znk ∈ [0, 1], whereas the MM assumes znk ∈ {0, 1}. To understand

this subtle difference the performance of both schemes was compared on synthetic data

of varying size and parameters; it was observed that the complete data log-likelihood

obtained by MM was always larger than the complete data log-likelihood obtained by

the EM. Furthermore, the MM had a lower variation of information (VI) [46] score than

the EM; this score estimates the information shared between the true clustering and the

estimated clustering where a zero is a complete agreement; this is similar to the Binder’s

loss [47]; see [48] for more information. This shows that the MM scheme is better than

the EM scheme for this problem, the reason for this may be that the EM assigns ‘soft

clustering’ while MM assigns ‘hard clustering’.

3.4 Experiments

Three data sets will be used to assess how well the Panjer mixture model (PanjerMM)

is able to learn the density of some observations. For comparison, the binomial mixture

(BMM), the Poisson mixture model (PMM), and the negative-binomial mixture model
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(NBMM)will also be applied to the same data sets. TheMM scheme (described in section

3.3.1) will be used to learn the parameters of each mixture model, each scheme will run

till the difference in the complete data log-likelihood is less than 10−4 and restarted ten

times with random initialisation; results from the best run will be reported.

Synthetic

The first data set consists of 3000 synthetic observations generated from three equal-

sized component mixture models; the first component is a negative-binomial distribu-

tion, the second component is a Poisson distribution and the third component is a bino-

mial; the data generating process can be seen in Algorithm 1, and the data can be seen

in Figure 3.2.

Algorithm 1 Generating synthetic data
for n← 1 to 3000

Sample: k ∼ multinomial
(
1
3 ,

1
3 ,

1
3

)

if k = 1
Sample: yn ∼negative-binomial(5, 0.1)

else if k = 2
Sample: yn ∼Poisson(20)

else
Sample: yn ∼binomial(20, 0.5)

Output: Observations: y1,...,N

In Table 3.2 we report the density estimation error; which is the absolute error

between the estimated density and empirical density, the percentage accuracy of the

clustering; which describes the percentage of points that were correctly assigned to the

correct mixture component, and the variation of information (VI) [46]; which calculates

the information shared between the true clustering and the estimated clustering where

a zero is a complete agreement.

From Table 3.2 we can see that the performance of both the NBMM and PMM was

poor, Figure 3.2 shows that they both failed to capture the middle and right-most com-

ponent correctly; this is probably due to their assumptions on dispersion. Surprisingly,

the BMMmanaged to do quite well but it failed to correctly estimate the tails of the com-

ponent densities, hence the slightly higher density estimation error. The PanjerMM did
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Table 3.3: The performance of different count data mixture models on mortality data
from UK Office for National statistics [49]. We report the density estimation
error which is the absolute error between the estimated density and observed
density, the accuracy of each mixture model, and the variation of information
(VI) of each model.

Result
Mixture model Density estimation error Accuracy Variation of information

Binomial 0.564 99% 0.14
Poisson 0.433 100% 0.00

Negative-binomial 0.465 99% 0.14
Panjer 0.407 100% 0.00

Mortality data

The second data set is from the UK Office for National Statistics, the data consist of

the weekly deaths in England and Wales between two age groups [49] in 2010; each age

group represents a component in a two-component mixture model. The first component

is the number of deaths of children under the age of one; this has a mean of 33.4 and

a variance of 27.7 (underdispersed), the second component is the number of deaths of

children between the ages of one to fourteen; this has a mean of 11.7 and a variance of

14.2 (overdispersed); the data can be seen in Figure 3.3. The goal is to not only cluster

the data correctly but also learn the correct density of the data.

Results from Table 3.3 show that in terms of clustering, both the BMM and NBMM

have some misclassifications; this can be seen in Figure 3.3 where BMM underestimated

the density ‘in-between’ the two components, and the NBMMoverestimated the density

‘in-between’ the two components. Both the PMM and PanjerMM do equally well in

terms of clustering the data, however, the PMM slightly underestimates the density in

the right component, hence it has a higher density estimation error.

Weaving data

The third data set is a count of the number of breaks in a fixed length of yarn (also called

a loom) [50]; a histogram plot of the data can be seen in Figure 3.4. The experiment was

run with three different numbers of components (K) to estimate the density of the data,
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distributions; this can be achieved as the parameters of the distribution are not coupled.
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Chapter 4

Robustifying mixture models using the

maximum mean discrepancy

It is well known that one popular application for mixture models is clustering data using

a probabilistic framework; where each mixture component can be used to represent a

distinct cluster [13] or a building block for clusters at different levels of abstraction

[51]. Mixture distributions also provide a formal framework for specifying assumptions

about: the cluster shape [47, 52, 53]; the partition topology [54, 55]; the expected parti-

tion process [56] and others. Inference in mixtures is generally intractable so we resort

to iterative optimisation algorithms to achieve maximum likelihood estimation [57–60],

finding a point estimate of the posterior mode [61, 62], or simulate the desired poste-

rior using a wide variety of Markov Chain Monte Carlo (MCMC) techniques [63–65].

However, this assumes that the model is correctly specified (or not misspecified). If this

is not the case, and the mixture model is misspecified then cluster assignments will be

incorrect. Therefore, in this chapter, we propose a method to learn cluster assignments

using a mixture model given that there is misspecification.

4.1 Problem definition

Let {yn}Nn=1 ∈ Y be a set of N D-dimensional observed data points in some data space

Y , where each data point yn is sampled from some unknown distribution F∗. In mod-
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eling one assumes that F∗ d
= Fθ i.e., each true data generating distribution can be

represented using some parametric density Fθ such as an exponential family, or varia-

tional autoencoder (VAE) with parameter(s) θ ∈ Θ; where if Fθ generates multivariate

Gaussian data then θ can represent the mean, the covariance matrix or both. In the

Bayesian paradigm these parameters have the following posterior distribution:

P
(
θ|{yn}Nn=1

)
∝ P (θ)
︸︷︷︸

prior

× Pθ

(
{yn}Nn=1|θ

)

︸ ︷︷ ︸

likelihood

, (4.1)

where Pθ (·) is the probability function1 of the data generating distribution Fθ. The pa-

rameter(s) θ can be inferred in a number of different ways: (1) Gibbs sampling where the

inferred parameter is sampled from the posterior distribution conditioned on other pa-

rameter(s) using an MCMC, (2) Maximum likelihood of the observed data where the in-

ferred parameter(s) maximise the likelihood portion of equation (4.1), and (3) Maximum-

a-posteriori where the inferred parameter(s) maximise the posterior distribution.

However, the assumptionF∗ d
= F

θ̃
may not always be true as the true data generat-

ing distribution is unknown; where θ̃ denotes the inferred parameter(s). This will result

in inferring incorrect distributional parameter(s) θ̃ which as a result will estimate the

incorrect density. For example, a Gaussian distribution will not correctly model skew-

Gaussian data, this becomes more problematic if the data consists of outliers; see Figure

4.1. We call this problem misspecified likelihood.

4.2 Proposed maximum mean discrepancy pseudo-point

marginal

The main problem with misspecified likelihood is that there is always some uncertainty

if the assumed data generating distribution is equivalent to the true data generating

distribution (i.e., F∗ d
= F

θ̃
). Instead of representing the chosen likelihood using a dis-

tribution parameterised by some parameter(s) θ (i.e., Pθ (·) ), we propose to use ‘pseudo-
1 This can be a probability mass function if the data space is discrete, or a probability density function

if the data space is continuous.
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etc. However, it has been observed in [67] that computing the Ali-Silvey distance in

high dimensions can be tough. An alternative way to define d (·, ·) is to compare the

summary statistics (i.e., mean and variance) between the two densities, this can be done

using integral probability metrics (IPM) [68], which is a generalisation of distances such

as the Wasserstein distance (also called the earth mover distance), Dudley metric, total

variation, maximum mean discrepancy (MMD), etc [67]. It has been observed that the

MMD is a robust distance to model misspecification [69, 70], furthermore, the MMD

also allows one to decide what summary statistic(s) should be used to compare densities.

Therefore, the statistical distance d (·, ·)will be defined using theMMD, which is defined

as [71]:

d
(
P̃y, P̃u

)
= MMD

[
P̃y, P̃u

]
= sup

f∈G

{∫

f (Y ) P̃y (dY )−
∫

f (Y ) P̃u (dY )

}

= sup
f∈G

{〈

f, µP̃y − µP̃u

〉

H

}

=
∥
∥
∥µP̃y − µP̃u

∥
∥
∥
H

(4.3)

where Y is a random variable on some topological space Y , G are a class of function

used to compute summary statistics in the reproducing kernel Hilbert space (RKHS)H,

and µP̃y and µP̃u are the ‘mean embedding’ of the distributions P̃y and P̃u respectively in

the RKHS. An added advantage of the MMD is that equation (4.3) can be approximated

using samples from the two densities:

MMD2
[
P̃y, P̃u

]
=

1

N2

∑

i,j

k (yi, yj) +
1

M2

∑

i,j

k (ui, uj)

− 2

MN

M∑

m=1

N∑

n=1

k (um, yn) ,
(4.4)

where here k (·, ·) ∈ H is a kernel in the reproducing kernel Hilbert spaceH. The MMD

can be used as a probability metric if the kernel is characteristic [67]; for example, the

Gaussian kernel.

Therefore, the proposed model uses M pseudo-points {um}Mm=1 to approximate the

true density of the data by using theMMD; hence the namemaximummean discrepancy
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pseudo-point marginal. In the proposed MMD pseudo-point marginal, the probability

likelihood of an observation yn is:

P
(
yn|{um}Mm=1

)
= λ exp

(
−λ×MMD2

[
δyn , P̃u

])
, (4.5)

where δyn is a Dirac measure at yn ∈ Y , and λ > 0 is a distributional parameter (typi-

cally set to one), and:

MMD2
[
δyn , P̃u

]
= k (yn, yn) +

1

M2

∑

i,j

k (ui, uj)−
2

M

M∑

m=1

k (um, yn) .

The advantage of the proposed MMD pseudo-point marginal can be seen in Figure

4.1, where the MMD pseudo-point marginal (with M = 10 and Gaussian kernel) is not

affected by any outliers, moreover, no assumptions on the true data generating distri-

bution are assumed.

Related work

One closely related solution to this type of problem is to replace the likelihood term of

Bayes‘ rule with a loss function; this is called generalised Bayesian inference (GBI) which

has a generalised posterior [72, 73]:

P
(
θ|{yn}Nn=1

)
∝ P (θ)
︸︷︷︸

prior

× exp
(
−ωℓ

(
{yn}Nn=1,θ

))

︸ ︷︷ ︸

loss function

, (4.6)

where the prior distribution encodes the prior belief of θ in the absence of any data,

{yn}Nn=1 is a set of N data points, ω ≥ 0 is the learning rate, and ℓ
(
{yn}Nn=1,θ

)
is a

loss function. If ω = 1 and ℓ
(
{yn}Nn=1,θ

)
is the negative log-likelihood then equation

(4.6) is equivalent to the traditional Bayesian posterior; see [74] for a more in-depth

introduction.

The rationale behind this generalised posterior is that as data increases, summarising

robustly the posterior is further masked by sensitivity to misspecification, i.e., the prior

distribution becomes dominated by the likelihood as data increase. This is further exac-
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erbated if the data has some misspecification. One solution to the data likelihood domi-

nating the posterior is to temper the likelihood [75]; where the loss function in equation

(4.6) ℓ
(
{yn}Nn=1,θ

)
is the negative log-likelihood and ω ≥ 0 controls the prominence

of the prior, where:

• If ω = 0, then the posterior is equivalent to the prior

• If 0 < ω < 1, then the prior is given more precedence than it would when com-

pared to the standard Bayesian posterior

• If ω = 1, then the posterior is equivalent to the standard Bayesian posterior

• If ω > 1, then the likelihood is given more precedence than it would when com-

pared to the standard Bayesian posterior

Miller and Dunson [76] showed that likelihood tempering can be taught as a relaxation

which averages over all the support within the KL divergence neighbourhood of the

unknown population distribution [76]. Furthermore, the loss function of the generalised

posterior can be replacedwith any discrepancymetric; this will allow one to evaluate the

likelihood of data given the parameter θ in a robust manner [77]. However, all of these

approaches differ from the proposed MMD pseudo-point marginal in three ways: (1)

They place significance on inferring the parameter θ in the presence of misspecification

over learning the correct data generating distribution, (2) They assume that the prior

distribution contains the ‘true’ distribution of θ which is then used to find the ‘true’

value, and (3) All parameters of the model are coupled for example in a Gaussian model,

the mean and variance will be updated in the same fashion.
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4.3 Mixtures of maximum mean discrepancy pseudo-

point marginal

Let {yn}Nn=1 be a set of N D-dimensional observed data points which are multi-modal

and generated by a mixture of K components:

π|α ∼ Dirichlet
( α

K
, . . . ,

α

K

)

,

cn|π ∼ Categorical (π) ,

yn|cn ∼ F∗
cn
,

whereK denotes the number ofmixture componentswhich can be fixed, randomor infi-

nite; π = [π1, . . . , πK ] denote somemixing parameters typically assuming
∑K

k=1 πk = 1;

{πk}Kk=1 ∈ [0, 1], α > 0 is a hyperparameter, cn ∈ {1, . . . , K} is a variable which indi-

cates which mixtures observation n is sampled from, and {F∗
k}Kk=1 areK true unknown

data generating distribution; or mixture components. Each mixture component can be

interpreted as a district cluster which results in cn ∈ {1, . . . , K} representing which

‘cluster’ observation n belongs to. We assume that F∗
k

d
= Fθk

for k ∈ {1, . . . , K}, i.e.,

each true data generating mixture component F∗
k can be represented using a paramet-

ric density Fθk
which parameterised by some parameter(s) θk ∈ Θ;. This results in the

following data-generating process:

π|α ∼ Dirichlet
( α

K
, . . . ,

α

K

)

,

{θk}Kk=1
i.i.d.∼ H ,

cn|π ∼ Categorical (π) ,

yn|θcn ∼ Fθcn
,

where the distribution parameters {θk}Kk=1 are K i.i.d. samples from some distribution

H . The parameters {π, c1 . . . , cN ,θ1, . . . , θK} can be inferred in a variety of different

ways, for example: (1) The expectation-maximisation (EM) scheme which first takes
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the expectation (E-step) of the latent variables {cn}Nn=1 with respect the posterior dis-

tribution and then maximises (M-step) the complete-data likelihood with respect to the

remaining parameters, (2) Gibbs sampling which iteratively samples each parameter

conditioned on the other parameters using an MCMC, and (3) Maximum-a-posterior

where each inferred value of a parameter maximises the posterior distribution of the

parameter.

However, as discussed in Section 4.1, the assumption F∗
k

d
= F

θ̃k
may not always be

true ∀ k as the true data generating distributions {F∗
k}Kk=1 are unknown; where {θ̃k}Kk=1

denotes the inferred parameters. Furthermore, this also implies that all components

are the same distributions, i.e., mixtures of Gaussian’s, which again is not always true.

This not only leads to inferring the incorrect distributional parameters {θ̃k}Kk=1, but

the inferred clustering {c̃k}Kk=1 will also be incorrect. We call this misspecified mixture

model.

To solve the problem faced by misspecified mixture models, we propose to use the

MMD pseudo-points marginals on mixture models, where each mixture component is

represented using M pseudo-points, we call this the mixtures of MMD pseudo-point

marginal. The posterior probability of cn under the proposed model is:

P
(
cn = k|yn, {u(k)

m }Mm=1

)
∝ πk × λ exp

(
−λ×MMD2

[
δyn , P̃u(k)

])
.

An expectation-maximisation (EM) [45] algorithm to infer all the parameters ofmixtures

of MMD pseudo-point marginal is described in Appendix B.1.

4.4 Results

The proposed mixtures of MMD psudo-points marginal are applied on three different

data sets to see if it is able to learn more accurate cluster assignments when compared

to other variants of the Gaussian mixture models.
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the log-likelihood (after burn-in). The mixtures of MMD pseudo-point marginal have

10 pseudo-points per mixture, which uses the Gaussian kernel to compute the MMD.

At each iteration the LT-GMM was given a choice between how much information to

use from the prior and the data to update the Gaussian means, this is done using two

additional pieces of information, first a parameter ζ ∈ [0, 1] which controls how much

‘trust’ there is within the data over the prior; three different runs with ζ ∈ {0.1, 0.5, 0.9}

were executed and results from the best runs are reported (results from all experiments

can be found in Appendix B.2), the second requirement was having some ‘prior’; in this

case the ‘true’ Gaussian means were given as the prior. One must note that the TL-

GMM is very similar to the coarsening posterior [76] except the entire data likelihood

is not assumed to be ‘corrupted’. At each iteration, the PB-GMM would use the existing

parameters to generate ‘pseudo-samples’ which would then be used to find multiple

Gaussian means for each component k (see Algorithm 1 in [78]); this requires the fol-

lowing parameters: number of bootstrap samplesB ∈ {100, 1000}, number of ‘pseudo-

samples’ T ∈ {100, 10000} and concentration parameter c ∈ {1, 10, 100}, multiple runs

over different values were executed and results from the best runs are reported (results

from all experiments can be found in Appendix B.2).

Variants of mixture models
Data Standard MMD LT PB

GMM pseudo-points marginal GMM GMM
Train Data (EM) 81± 1 100± 0 85± 2 -

Train Data (Gibbs) 80± 1 100± 0 84± 3 82± 1
Test Data (EM) 78± 1 100± 0 81± 1 -

Test Data (Gibbs) 76± 1 100± 0 81± 2 80± 2

Table 4.1: Performance of different mixture models on synthetic data set. Each model
was trained on 80% of the data set and tested on the remaining 20%. The
average accuracy and one standard deviation from 20 different experiments
are reported.

Results from Table 4.1 suggest that both the Gibbs and EM have similar results over

all models. As expected the standard GMM overlaps the two densities of the two com-

ponents (see Figure 4.2) and therefore does the worst. The PB-GMM does marginally

better than the standard Gaussian MM but fails still fails to learn the correct clusters.
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where k (yi, yj) = 1 if and only if yi = yj ; note that in this situation we’d want to

maximise the MMD criterion. We compared the standard NBMM with the mixtures

of MMD pseudo-point marginal and K-means clustering algorithm. K is also inferred

given the data, this is done by first placing a binomial distribution prior to K , and then

evaluating themost likely value forK given the data andmodel; this is done for standard

NBMM and mixtures of MMD pseudo-point marginal, but not for K-means clustering

algorithm as it’s not probabilistic. The standard NBMM only learns two clusters (see

Figure 4.5); these clusters clearly capture the effect of cell-specific sequencing depth,

rather than the global structure. Results for the K-means suffer from a similar problem

to the standard NBMM. However, the mixtures of MMD pseudo-point marginal identify

the three correct clusters, all of which are not fooled by the sequencing depth.

4.5 Discussion

In this chapter, we propose an alternative method to robustify models when the like-

lihood is misspecified. We propose a novel model which represents the likelihood us-

ing pseudo-points that have a density similar to samples drawn from the true data-

generating process. Inferring these pseudo-points and computing any probability is

done via the maximum mean discrepancy which compares the distance between the

family of summary statistics between two distributions using the RKHS; hence the pro-

posed model is called maximum mean discrepancy pseudo-point marginal. The pro-

posed model is used to cluster data in a mixture model setup, we show how other model

agnostic approaches such as likelihood tempering fail to cluster data when the model is

slightly misspecified. We also demonstrate the utility of the MMD by clustering more

complicated data where the moments of the components overlap in the Euclidean space

but are in fact well separated in the RKHS. This property of the RKHS was also useful

in clustering high-dimensional single-cell ATAC-seq data. One future direction of the

proposed model is to apply in different sets ups, currently, this has only been used in

mixture models, but it has the potential to be used in other domains such as dimension-
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ality reduction or training variational autoencoders.
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Chapter 5

Piecewise linear dimensionality

reduction

1

Linear dimensionality reduction methods such as factor analysis (FA) [82] (defined

in Section 5.4.1) and principal component analysis (PCA) [83] (defined in Section 5.5) are

a mainstay of high-dimensional data analysis, due to their simple geometric interpreta-

tion and attractive computational properties. Both FA and PCA can be seen as matrix

decomposition techniques that aim to explain the dependence structure among high-

dimensional observations through a decomposing of the covariance matrix of the data,

which is positive-definite [84]. As data increases in size and complexity, the assumption

that linear components are a linear combination of all of the original variables becomes

increasingly restrictive. Therefore, it is essential to equip these models with the ability

to control the number of unique components used to represent each data point. This

is critical since it will naturally separate: (1) Components that explain large variance

percentages for a small subset of the data, and (2) Spurious components which explain

a small variance percentage for a potentially larger subset of the data. This formulation

is natural in the context of data visualisation and dimensionality reduction, where nat-

ural constraints on the feature representation for each data point occur in visualisation,

normally, points are reduced to two or three dimensions, in dimensionality reduction.
1 Full paper is available here.
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5.1 Linear Gaussian model

The linear Gaussian LVM assumes that all observed data y ∈ R
D can be decomposed in

the following way:

y = Wx + µ + ϵ, (5.1)

where W ∈ R
D×K is a transformation matrix, x ∈ R

K are unknown latent variables,

µ ∈ R
D is a mean (offset) vector and ϵ describes the model noise (typically Gaussian).

Various widely-used techniques are obtained by making different assumptions on the

prior distributions of x, W and ϵ; these will be explored in the following sections.

5.2 Factor analysis

Factor analysis (FA) assumes that the observed data is a linear combination of some

unobserved factors. The data-generating process uses the linear Gaussian LVM form

from equation (5.1) in the following way:

wk ∼MVN
(
0, σ2

wID
)
,

ϵn ∼MVN
(
0, diag

(
σ2
))

,

xn ∼MVN
(
0, σ2

xIK
)
,

yn = Wxn + ϵn,

(5.2)

where wk ∈ R
D for k ∈ {1, . . . , K} are factor loading vectors, all which make the

(D ×K) factor loading matrix W = [w1, . . . ,wK ], IK is an identity matrix of size K ,

MVN (·, ·) is the multivariate Gaussian distribution, {σ2 = (σ2
1, . . . , σ

2
D) , σ

2
w, σ

2
x} are

parameters which control the variance of each variable, and n ∈ {1, . . . , N} indexes a

single data point. Each observation yn is assumed to be a linear combination of all fac-

tors, this is quite restrictive as learning the global structure of the dataspace is prioritised

over any local structure of the data space.
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5.3 Latent feature factor analysis models

In this section, we derive flexible latent feature FA models that leverage weakly con-

strained feature allocations and allow us to model a wide range of sparse FA models.

We demonstrate that by uninformative discrete distributions or constrained distribu-

tions without replacement, one can derive simple modelling alternatives which have

favourable properties such as the ability to represent both sparse and dense factor load-

ings. Furthermore, this prevents the FA from prioritising the global structure of the data

space over the local structure of the dataspace [85–88]. The addition of latent variable

generalises the FA data generating process from equation (5.2) into:

wk|σ2
w ∼MVN

(
0, σ2

wID
)
,

ϵn|σ2 ∼MVN
(
0, diag

(
σ2
))

,

xn|σ2
x ∼MVN

(
0, σ2

xIK
)
,

zn ∼ F (·)

yn = W (xn ⊙ zn) + ϵn,

(5.3)

where wk ∈ R
D for k ∈ {1, . . . , K} are factor loading vectors, all which make the

(D ×K) factor loading matrix W = [w1, . . . ,wK ], IK is an identity matrix of size K ,

MVN (·, ·) is the multivariate Gaussian distribution, {σ2 = (σ2
1, . . . , σ

2
D) , σ

2
w, σ

2
x} are

parameters which control the variance of each variable, n ∈ {1, . . . , N} indexes a single

data point, ⊙ denotes the Hadamard product, also known as the element-wise or Schur

product and zn is aK dimensional binary latent variable sampled from some distribution

F (·). In the following section, we’ll see different assumptions on the distribution F (·)

results in different variants of FA; however, it should be noted that if zn is full of ones,

then the data generating process in equation (5.3) is equivalent to the data generating

process in equation (5.2).
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5.3.1 Infinite sparse FA

The infinite sparse FA (isFA) [85] model deviates from the data generation process in

equation (5.3) in three ways: (1) It assumes an IBP prior on the latent variables {zn}Nn=1

with the concentration parameter α > 0, (2) The model noise has a single variance

parameter σ2 (i,e., ϵn ∼MVN (0, σ2ID), and (3)The latent variables have fixed variance

σ2
x = 1 (i.e., xn ∼MVN (0, IK)).

Inference

By using the data generation process in equation (5.3), the joint likelihood of the isFA

is:

P
(
{yn}Nn=1, {Wk}Kk=1,{xn}Nn=1, {zn}Nn=1|θ

)

=
N∏

n=1

(

P
(
yn|W, xn, zn, σ2

)
K∏

k=1

P (xkn) P (zkn|α)
)

×
K∏

k=1

P
(
wk|σ2

W

)
,

where θ = {α, σ2, σ2
W} consists of all the remaining parameters. A straightforward

Gibbs sampler can be used to infer all the parameters of the isFA model; however, a

more scalable variational inference algorithm can also be used on the isFA model [86].

The posterior distribution over the latent variables xkn for which its respective zkn =

1 is sampled from a Gaussian:

xkn|yn, z−kn, {wk}Kk=1, σ
2 ∼ N

(
wT

k ϵ−kn

σ2 +wT
kw

,
σ2

σ2 +wT
kw

)

,

where ϵ−kn = yn −W (xn ⊙ zn) with zkn = 0, or the noise associated with nth point

and kth feature.

The posterior distribution over the kth factor loading wk is a D-dimensional multi-

variate Gaussian:
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wk|Y,X,W−k, σ2
W , σ2 ∼MVN

(
σ2
W

xkxTk σ
2
W + σ2

E−kxTk ,
(
xkxTk
σ2

+
1

σ2
W

)

ID

)

,

where W−k is the matrix W without the k column set to zero, xk is the kth row of the

matrix X, E−k is (Y−W(X⊙ Z)) with wk = 0, and ID is an identity matrix of size D.

The matrix Z is sampled in two steps: the first involves sampling existing features,

and the second, sampling new features. The latent variables xkn are marginalised since

the collapsed Gibbs sampler can lead to faster convergence [89]; the marginal distribu-

tion is available in closed form as the Gaussian prior over the hidden sources is conju-

gate to the Gaussian likelihood over the observed data. The existing features zkn can be

sampled directly using the Bernoulli posterior:

zkn|yn, xn,wk, σ
2
W , σ2 ∼

Bernoulli
(

P (yn|zkn = 1) P (zkn = 1|zk−n)

P (yn|zkn = 1) P (zkn = 1|zk−n) + P (yn|zkn = 0) P (zkn = 0|zk−n)

)

,

where zk−n is the kth row of the matrix Z without the nth element, P (zkn = 1|zk−n) =
∑

i ̸=n zki

N
, and P (zkn = 0|zk−n) =

N−
∑

i ̸=n zki

N
. The posterior for new features are not

available in closed form, but it can be approximated using a Metropolis-Hastings step.

For each observation, adding κ number of new features and their corresponding pa-

rameters (columns of the matrix W) are jointly proposed and accepted with probability

proportional to likelihood improvement brought about by these new features; see equa-

tion (13) in [85].

5.4 Relevance determination with discrete variables

Latent class FA models make rigid partitioning assumptions, they fail to model richer

clustering topologies, but latent feature FA models can infer uninterpretable features

if not adequately constrained. For example, in situations when a beta-Bernoulli prior
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constrained by K . Thus, we can interpret L as the local capacity of the model, with

K controlling the global sharing capacity. If L = K , we recover the classical linear

Gaussian model of equation (5.1), since all features are associated with all observed data

points. As K − L increases, more local structures in the data can be represented.

If we assume that, for each column of Z in a latent feature model, exactly L out ofK

features are non-zero, then there are
(
K

L

)
possible configurations for each column of Z.

When a flat prior is placed on Z, then each configuration has an equal likelihood, 1

(K
L
)
.

The joint probability over any particular allocation matrix is given by the product:

P (Z|K,L) =
N∏

n=1

1
(
K

L

) ,

The restriction that L out of K features are non-zero, means that the rows of Z

can no longer be distributed across the K feature columns. Instead, each of the 1

(K
L
)

configurations has a categorical likelihood that depends on a different combination of

L non-zero factor loadings:

P
(
zn = z∗|yn, xn, {wk}Kk=1, σ

2
)
∝
∏

j∈z∗

P
(
yn|xn,wj, σ

2
)
,

where z∗ denotes some K-dimensional configuration [1, 0, 0, 1, . . . , 0, 1]T with L 1’s.

For large K and small L, the number of unique configurations z∗ grows factorially and

we may wish to approximate the posterior over zn assuming conditional independence

of the feature assignments. In that case, we sequentially sample without replacement

from the categorical posterior:

l|yn, {wk}Kk=1, xn, σ
2 ∼ Categorical

(

(1− z1,n) P (yn|w1, z−1,n, xn, σ2)
∑K

k=1 (1− zk,n) P (yn|wk, z−k,n, xn, σ2)
,

. . . ,
(1− zK,n) P (yn|wK , z−K,n, xn, σ2)

∑K

k=1 (1− zk,n) P (yn|wk, z−k,n, xn, σ2)

)

.
(5.4)

This information is encoded in zn by setting the lth element to 1, this is repeated L

times to ensure each zn satisfies the constraint that L features are allocated per point.

The posterior in equation (5.4) is identical to the posterior in a mixture model, where
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observation n is assigned to a class (mixture component) using the categorical distri-

bution, except in this case we allow observation n to belong to L classes. If we are to

further assume that the probability of each feature being active depends on how often

it is selected in the rest of the data (i.e. the ‘rich-get-richer’ effect applies), we augment

equation (5.4) with independent counts:

l|yn, {wk}Kk=1,xn, σ
2 ∼

Categorical
(

(1− z1,n)m
(−n)
1 P (yn|w1, z−1,n, xn, σ2)

∑K

k=1 (1− zk,n)m
(−n)
k P (yn|wk, z−k,n, xn, σ2)

,

. . . ,
(1− zK,n)m

(−n)
K P (yn|wK , z−K,n, xn, σ2)

∑K

k=1 (1− zk,n)m
(−n)
k P (yn|wk, z−k,n, xn, σ2)

)

,

where m
(−n)
k =

∑

i ̸=n zk,i. This results in a multivariate hypergeometric model for the

numbers of active allocations in Z.

Constrained factor allocation

Above, we assumed that the main feature allocation constraint is the number of non-

zero factor loadings per point (i.e., a row-wise sparsity constraint on Z depending on L).

However, we can also control the column-wise sparsity using constraints on the total

number of times that a factor can be allocated to a point. Let us assume that each data

point is associated withL out ofK factors, and explicitly model the number of non-zero

factor loadings across columns. We can place the truncated multinomial distribution (see

equation (5.5)) as a prior on Z with K different categories and probability of success πk

for k = 1, . . . , K and
∑K

k=1 πk = 1. The truncated multinomial can be used to restrict

the number of trials L, as well as the total number of times a category can be selected,

i.e. ck for each category k with
∑K

k=1 ck ≥ L. A sample from the truncated multinomial

distribution is then a K-dimensional vector m of counts:

P (m|π) = L!

V (π, L, c)

K∏

k=1

πmk

k

mk!
, (5.5)
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where m = [m1, . . . ,mK ]
T and V (π, L, c) is a normalising constant:

V (π, L, c) =
c1∑

l1=0

· · ·
cK∑

lK=0

(

I

(
∑

i

li = L

)

L!
K∏

k=1

πlk
k

lk!

)

,

where I (·) is an indicator function which is one if the statement inside is true, otherwise

zero. Under this constrained model, we can write the conditional probability over the

sparse matrix Z given π = [π1, . . . , πK ]:

P (Z|π) =
N∏

n=1

K∏

k=1

P (znk|πk, c∗) ∝
N∏

n=1

L!

V (π, L, c)

K∏

k=1

πznk

k

znk!
, (5.6)

where P (znk|πk, c∗) cannot be easily distributed since we need to keep track of c∗ the

total number of available draws from each factor, such that
∑K

k=1 znk = L. In the

fully Bayesian setting, one can model the allocation marginal probabilities π1, . . . , πK

with a Dirichlet distribution parametrised by the countsm1, . . . ,mK . A nonparametric

extension of this constrained model can be derived by taking the limit K → ∞ in

equation (5.6) and integrating out π.

5.4.1 Adaptive FA

The adaptive FA (aFA) [4] model also deviates from the data generation process in equa-

tion (5.3) in three ways: (1) It assumes a multivariate hypergeometric prior on the latent

variables Z with parameter L, (2) The model noise has a single variance parameter σ2

(i,e., ϵn ∼ MVN (0, σ2ID), and (3) The factor loading variables have fixed variance

σ2
w = 1 (i.e., wk ∼MVN (0, ID)).
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Inference

The data log-likelihood for the proposed aFA model is:

LN = −
N∑

n=1

(

K

2
ln
(
σ2
x

)
+

D

2
ln
(
σ2
)

+
1

2σ2
x

xT
nxn +

1

2σ2
yT
nyn −

1

σ2
xT
nA

T
nW

Tyn +
1

2σ2
xT
nA

T
nW

TWAnxn

)

,

where An = diag (zn) is a (K ×K) matrix with the diagonal elements set to zn. The

parametric nature of the hypergeometric distribution over Z allows for an efficient

expectation-maximisation (EM) algorithm for training the aFAmodel, which can be used

both for initialisation of a full Gibbs sampler or for rapidly obtaining a (local) maximum-

a-posteriori solution for the model; however, the factor loading matrixW is now treated

as a parameter instead of a random variable. The EM scheme iteratively switches be-

tween taking the expectation step (E-step) and the maximisation step (M-step). In the

E-step, the expectation of the latent variables {xn}Nn=1 is taken with respect to the pos-

terior distribution; this results in the complete data log-likelihood:

Lcomplete
N = −

N∑

n=1

(

K

2
ln
(
σ2
x

)
+

D

2
ln
(
σ2
)

+
1

2σ2
x

tr
(
E
[
xnxT

n

])
+

1

2σ2
yT
nyn −

1

σ2
E [xn]

T AT
nW

Tyn

+
1

2σ2
tr
(
AT

nW
TWAnE

[
xnxT

n

])

)

,

(5.7)

where:

E [xn] =
(
σ−2
x IK + σ−2AT

nW
TWAn

)−1 (
σ−2AT

nW
Tyn
)
,

E
[
xnxT

n

]
=
(
σ−2
x IK + σ−2AnWTWAn

)−1
+ E [xn]E [xn]

T .

In the M-step, the complete data log-likelihood in equation (5.7) is maximised with re-

spect the other parameters; this is done by solving the following differential equations
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∂L
complete
N

∂W = 0, ∂L
complete
N

∂σx
= 0 and ∂L

complete
N

∂σ
= 0, which results in the following updates:

W =

(
N∑

n=1

yn (Anxn)
T

)(
N∑

n=1

AnE
[
xnxT

n

]
An

)−1

,

σ2 =
1

ND

N∑

n=1

(
yT
nyn − 2xTnAnWTyn + trace

(
AnWTWAnE

[
xnxT

n

]))
,

σ2
x =

1

NK

N∑

n=1

trace
(
E
[
xnxT

n

])
.

Each latent variable zn has L indices {l1, . . . , lL} for which zlin = 1; therefore the

M-step update for the latent variable zn boils down to finding the L indices {l1, . . . , lL}

for each observation n which maximises the complete log-likelihood in equation (5.7);

this is highlighted in Algorithm 3. Since we are often interested only in a point estimate

Algorithm 3 Update latent varibles {zn}Nn=1

for n← 1 to N

Set zn = 0
for i← 1 to L

Set li = argmax
(

(1− z1n)
σ2

σ2+wT
1 w1

exp
(

0.5
(
wT

1 ϵ−1n

σ2

)2
)

, . . .

. . . (1− zKn)
σ2

σ2+wT
K
wK

exp
(

0.5
(
wT

K
ϵ−Kn

σ2

)2
))

Set zlin = 1

for the indicator variables Z, iterative optimisation via coordinate descent can lead to

a robust, local MAP estimate i.e. ZMAP [62, 91–93]. The complete EM algorithm for

the proposed aFA is summarised in Algorithm 4; with ϵ−kn = yn −W (xn ⊙ zn) with

zkn = 0, or the noise associated with nth point and kth feature.

5.4.2 Experiments

Synthetic data

Five different data sets are generates, each with follow the generative process described

in equation (5.3); with without the loss of generality σ2
w = 1, σ2 = σ2 = 0.12 and

σ2
x = 1. The core of the generative model remains the same across the different data

sets we generate (N = 1200, D = 35), and only the number of latent features K and
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Algorithm 4 EM pseudocode for parametric adaptive factor (aFA) analysis.
Input: Y,Θ,MaxIter
Initialise: Sample a random (K ×N) binary matrix Z and initialize {W,X} using PCA
for iter← 1 to MaxIter

for n← 1 to N

Set xn =
(
σ−2
x IK + σ−2AnWTWAn

)−1 (
σ−2AnWTyn

)

Set Ψn =
(
σ−2
x IK + σ−2AnWTWAn

)−1
+ xnxTn

Set {zn}Nn=1 using Algorithm 3
Set W =

(
∑N

n=1 yn (Anxn)T
)(
∑N

n=1 AnΨnAn

)−1

Set σ2 = 1
ND

∑N
n=1

(
yT
nyn − 2xTnAnWTyn + trace

(
AnWTWAnΨn

))

Set σ2
x = 1

NK

∑N
n=1 trace (Ψn)

the prior distribution F (·) on the binary latent variables {zn}Nn=1 changes. Samples

from five different prior distributions F (·) are displayed in Figure 5.2. Five different FA

methods (i.e. with changing treatment of {zn}Nn=1) are compared on the different data

sets; each model was trained on 80% of the data set and tested on the remaining 20%;

K = 10 results are reported in Table 5.1, and K = 20 results are reported in Table 5.2.

The five FA methods tested are:

• Factor analysis (FA): no binary latent variables z1,...,N exists; see Section 5.2.

• Infinite sparse FA (isFA): an IBP prior is placed on the binary latent variables

z1,...,N ; see Section 5.3.1.

• Finite sparse FA (fsFA): the binary latent variables z1,...,N are modelled with a

finite Beta-Bernoulli distribution across all points and features; in other words a

truncated version of isFA described in Section 5.3.1.

• Adaptive FA (aFA): a multivariate hypergeometric prior is placed in the binary

latent variables z1,...,N ; see Section 5.4.1.

• Sparse and dense FA (sdFA) [88]: the factor loading matrix W is split into two

components; one component is dense and the other component is sparse.

Both Table 5.1 and Table 5.2 also include a second result for the aFAmodel when trained

using the proposed EM algorithm (Algorithm 4). This was done to distinguish between

performance gains due to the model architecture and due to inference method. The
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results in Table 5.1 and Table 5.2 suggest that for sparse latent feature data and for single

feature linear Gaussian data, most of the methods perform similarly. The isFA model

performs consistently worse than all other methods due to its tendency to overestimate

the underlying number of latent features. When we set the concentration parameters

of isFA to learn the fixed K number of factors, reconstruction error is higher; if we set

concentration parameters to infer the number of factors that is higher than the true

generating number of factorsK , the reconstruction error drops. This effect is similar to

the one reported by [94] for Dirichlet process mixtures. Likewise, the sdFA model also

performs poorly across all data sets; this is probably because the sdFA assumes that all

sparsity can be modelled using the factor loading matrix.

FA performs well in terms of reconstruction error since it uses all factors to express

all points, i.e., it learns a lot more loadings than the alternative models with a more

parsimonious structure. In practice, latent feature FA methods are used with larger K

than FA since for each factor there is a linear combination of only a small subset of

data points. The fsFA manages to perform well across most settings, often achieving

comparable reconstruction error using a lot of sparser factor loadings. However, we see

its performance drop substantially for non-sparse balanced latent feature models. Due

to the generality of the aFA model, it performs well across all settings since the latent

space structures in the synthetic data are all special cases for the multivariate hypergeo-

metric model. The slightly lower reconstruction error of EM versus Gibbs aFA, suggests

convergence to good local optima for the proposed EM scheme and convergence issues

of the Gibbs sampler.

Factor sharing between different digits on the MNIST data set

In this section, we demonstrate training the proposed aFA model on N = 2500 odd-

labelled digits (500 of each type) from the MNIST handwritten digit data set [95]. The

raw pixel data were first reduced to D = 350 using standard PCA since this still pre-

serves 99.5% of the total variance within the data. The total number of unique factors

is set to K = 100 and the number L of observation-specific factors is set to maximise
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Table 5.1: Performance of different variations of factor analysis (FA) methods on five
different data sets of dimension D = 35 and latent features K = 10; the data
generating process is described in equation (5.3). Each model was trained
on 80% of the data set and tested on the remaining 20%, the average mean
squared error and one standard deviation from 20 different experiments are
reported.

Prior Sparse Balance Dense Single Subspace
matrix matrix matrix state clustering

Factor analysis 0.260 0.269 0.265 0.292 0.272
(FA) ±0.01 ±0.01 ±0.02 ±0.02 ±0.02

Finite sparse 0.347 0.349 0.349 0.348 0.348
FA ±0.03 ±0.02 ±0.03 ±0.02 ±0.03

Infinite sparse 0.351 0.395 0.361 0.357 0.363
FA ±0.05 ±0.09 ±0.14 ±0.15 ±0.06

Adaptive FA 0.343 0.346 0.346 0.347 0.345
(aFA) Gibbs ±0.03 ±0.02 ±0.03 ±0.02 ±0.02
Adaptive FA 0.247 0.251 0.250 0.251 0.248
(aFA) EM ±0.00 ±0.01 ±0.01 ±0.02 ±0.01
Sparse & 0.757 0.801 0.901 1.01 0.712
dense FA ±0.15 ±0.18 ±0.02 ±0.10 ±0.05

Table 5.2: Performance of different variations of factor analysis (FA) methods on five
different data sets of dimension D = 35 and latent features K = 20; the data
generating process is described in equation (5.3). Each model was trained
on 80% of the data set and tested on the remaining 20%, the average mean
squared error and one standard deviation from 20 different experiments are
reported.

Prior Sparse Balance Dense Single Subspace
matrix matrix matrix state clustering

Factor analysis 0.159 0.162 0.165 0.169 0.162
(FA) ±0.01 ±0.01 ±0.01 ±0.01 ±0.01

Finite sparse 0.340 0.340 0.341 0.342 0.341
FA ±0.03 ±0.03 ±0.03 ±0.03 ±0.02

Infinite sparse 0.336 0.337 0.340 0.343 0.344
FA ±0.04 ±0.04 ±0.03 ±0.02 ±0.02

Adaptive FA 0.335 0.336 0.338 0.339 0.342
(aFA) Gibbs ±0.02 ±0.02 ±0.03 ±0.03 ±0.02
Adaptive FA 0.136 0.136 0.140 0.140 0.139
(aFA) EM ±0.00 ±0.00 ±0.01 ±0.01 ±0.01
Sparse & 0.482 0.512 0.756 0.577 0.521
dense FA ±0.04 ±0.10 ±0.04 ±0.09 ±0.02
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5.5 Principal component analysis

Principal component analysis (PCA) is still one of the most common (and oldest) meth-

ods used in dimensionality reduction [97]. PCA uses an orthogonal transformation to

transform observed data into linearly uncorrelated principal components. Let {yn}Nn=1

be N D-dimensional data points and let {wk}Kk=1 be K orthonormal D-dimensional

principal component loadings; where the orthonormality results inwT
i wj = 0 for i ̸= j.

The vectors {wk}Kk=1 are the K largest (with respect to eigenvalues) eigenvectors of

the sample covariance matrix Σ = 1
N

∑N

n (yn − µ)T (yn − µ) where µ = 1
N

∑N

n yn

is the sample mean. Then the K principal component scores of the data point yn are

xn = WT (yn − µ); alternatively xn can be viewed as the ‘lower K-dimensional repre-

sentation’ of yn.

5.5.1 Probabilistic PCA

The probabilistic PCA [98] uses the linear Gaussian LVM form from equation (5.1) in

the following way:

ϵn|σ2 ∼MVN (0, σ2ID),

xn ∼ N (0, IK),

yn = Wxn + ϵn.

To infer the random variables xn and the parameters {W, σ}, [98] propose a EM

algorithm which first takes the expectation (E-step) of the latent variables xn with re-

spect to the posterior distribution and then maximises (M-step) the complete data log-

likelihood with respect to the parameters {W, σ}.

An alternative way to infer the parameters {W, σ} is to first marginalise out the

latent variables xn, and then maximise the marginal likelihood with respect to the

parameters. The maximum marginal likelihood update for the parameter W is the

K largest (with respect to eigenvalues) eigenvectors of the sample covariance matrix

Σ = 1
N

∑N

n (yn − µ)T (yn − µ). Hence, the orthonormalW gives a rational behind the
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name principal. Furthermore, the PCA can be obtained by assuming a small variance

asymptotic (SVA) of σ → 0.

5.6 Latent variable probabilistic principal component

analysis models

Latent feature visualisation counterparts have received a lot less attention, despite the

popularity of sparse principal component analysis techniques [99, 100]. This is most

likely due to the complexity of specifying distributions over orthogonal matrices and

the difficulty of performing inference with them. In this section, we extend the latent

factor analysis work (see Section 5.3) into the PPCA setup:

W ∼ B (·) ,

ϵn|σ2 ∼MVN
(
0, σ2ID

)
,

xn ∼MVN (0, IK) ,

zn ∼ F (·) ,

yn = W (xn ⊙ zn) + ϵn,

(5.8)

where B (·) is some distribution which samples the matrix W = [w1, . . . ,wK ] with

orthonormal columns; i.e. wT
i wj = 0 if i ̸= j and wT

i wi = 1, zn is a K dimensional

binary latent variable sampled from some distribution F (·), ⊙ denotes the Hadamard

product, and ID is a identity matrix of size D. The generative process in equation (5.8)

and equation (5.3) only differ in their assumption on the projection matrix W. In this

section two different variants of latent variable PPCA are introduced; each assuming

different prior F (·) on the binary latent variables {zn}Nn=1. The first variant infinite

sparse PPCA (isPPCA), places an IBP prior on the binary latent variables. The second

variant is the adaptive PPCA (aPPCA) [4], this places a multivariate hypergeometric

prior on the binary latent variables.

As discussed in Section 5.5.1, the principal component name comes from the fact
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that the maximum likelihood (marginal) update for the parameter W is the K largest

(with respect to eigenvalues) eigenvectors the sample covariance matrix. However, the

different priors F (·) on the binary latent variables {zn}Nn=1 result in explicit control

over the scale of the different projection axis; this can address well known pitfalls of

PCA such as the disproportionate crowding of the projections due to outliers or multi-

modalities and the sphericalisation of the projection; see Appendix C.1.

Inference

Computing the posterior distribution of the latent variables {xn, zn}Nn=1 and the projec-

tion matrixW is analytically intractable and we have to resort to approximate inference.

Unlike for aFA from Section 5.4.1, the posterior updates of the orthonormal matrix W

do not allow for closed form updates. At the same time numerically optimising over W

and marginalizing {x}Nn=1 leads to slow mixing and an EM scheme leads to poor local

solutions for this model. An efficient Markov Chain Monte Carlo (MCMC) scheme [101]

can be derived which iterates between explicit updates for W, {xn, zn}Nn=1, and others.

Sampling from directional posteriors is prohibitively slow, so we propose aMAP scheme

for the updates onW. Alternatively, we could use an automated MCMC platforms such

as STAN [102] for the inference, but STAN does not deal well with discontinuous like-

lihood models introduced by the binary latent variables {zn}Nn=1. This can be addressed

using discrete relaxations such as [35] or numerical solver extensions such as [103].

However, such an approach can be justified only for nonlinear intractable extensions of

latent feature PPCA, since the Gibbs sampler with closed-form updates is substantially

more efficient.

The joint data likelihood of both latent feature subspace models we propose takes

the form:
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P (Y,W,X,Z|σ,η) =
N∏

n=1

(

P (yn|W, xn, zn, σ)
K∏

k=1

P (xkn) P (zkn|η)
)

× P (W) ,

(5.9)

where isPPCA model and the aPPCA differ on the prior on the binary latent variables

{zn}Nn=1, hence in the aPPCAmodelη = {L,K}, and in the isPPCAmodelη = {α}. We

can check whether the MCMC sampler has converged using standard tests such as [104]

directly on equation (5.9). The inference of both models only differs with updating the

binary latent variables {zn}Nn=1, therefore the posterior updates on the other parameters

will be introduced together for both models.

Posterior of W

It is important to use a distribution with support on the Stiefel manifold (see [105] for

a good introduction) to comply with the orthonormal constraint on W. [106] explored

exactly this problem in the context of latent feature subspace modelling and proposed

using a conjugate Bingham prior [107] independently on the columns ofW leading to an

independent von Mises-Fisher posterior over each column where re-scaling is required

after each sample to maintain orthonormal. However, empirical trials suggest that this

results in very poor mixing (see Appendix C.2). To overcome this issue, we propose joint

sampling of the columns of W. We place a uniform prior over the Stiefel manifold on

the matrix W which allows us to work with a matrix von Mises-Fisher [108] posterior:

P (W|Y,X,Z, σ) = 0F−1
1

(

∅, D
2
,BBT

)

exp (tr (BW)) , (5.10)

where Y = [y1, . . . , yN ], X = [x1, . . . , xN ], Z = [z1, . . . , zN ], B = 1
2σ2 (X⊙ Z)YT and

0F−1
1 (·) is a hypergeometric function [109]. The normalisation term of the matrix von

Mises-Fisher posterior is not available in closed form, hence it is common to sample from

it using rejection sampling. [110] proposed a Metropolis-Hastings scheme to generate

samples from equation (5.10), the resulting posterior of W converges faster than the
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Bingham-von-Mises-Fisher posterior, but can be further sped up by numerical optimi-

sation methods. Here, we propose updating the matrix W by maximising the posterior

from equation (5.10) over the Stiefel manifold, i.e., keeping the orthonormality constrain

wT
i wj = 0 if i ̸= j and wT

i wi = 1. An efficient implementation can be achieved using

the Pymanopt toolbox [111], for optimisation over manifolds with different geometries;

this step is outlined in Appendix C.3.

Posterior of {xn}Nn=1

The posterior distribution over the latent variable xkn, for which its respective zkn = 1,

is sampled from a Gaussian:

xkn|yn,wk, σ ∼ N
(

yTnwk

σ2 + 1
,

σ2

σ2 + 1

)

(5.11)

where wk is the kth column of the matrix W.

Posterior of σ2

A inverse-Gamma prior is placed on σ2 with parameters {γ, ϑ}:

P
(
σ2|γ, ϑ

)
=

ϑγ

Γ (γ)

(
σ2
)−γ−1 exp

[

− ϑ

(σ2)

]

,

This leads to posterior distribution over σ2 of the form:

P
(
σ2|γ, ϑ,Y,W,X,Z

)
=

ϑγ

Γ (γ)

(
σ2
)−γ−1 exp

[

− ϑ

σ2

]

× 1

(2πσ2)
ND
2

× exp
(

− 1

2σ2

N∑

n=1

[

(yn −W (xn ⊙ zn))
T (yn −W (xn ⊙ zn))

]
)

∝
(
σ2
)−(γ+ND/2)−1

× exp
(

− 1

σ2

(
1

2
tr
[

(Y−W (X⊙ Z))T (Y−W (X⊙ Z))
]

+ ϑ

))

,

(5.12)

which is still an inverse-Gamma distribution with parameters γpost = γ + ND
2

and

ϑpost = 1
2
tr
[

(Y−W (X⊙ Z))T (Y−W (X⊙ Z))
]

+ ϑ.
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5.6.1 Infinite sparse PPCA

In the infinite sparse PPCA, an IBP prior is placed over the indicator matrix z1,...,N ; this

assumes that after a finite N number of observations only a finite K number of one-

dimensional subspaces are active. This results in the first K rows of Z = [z1, . . . , zN ]

having non-zero entries, and the remaining being all zeros. By design,K cannot exceed

the dimension of the data D and this leads to truncation of the IBP such that K has a

upper limit ofKmax;whereK ≤ Kmax ≤ D, therefore in the isPPCA, Z is a (Kmax ×N)

binary matrix, with the sum of the first K rows being non-zero and the sum of the

remaining Kmax − K rows being zero. We sample the matrix Z in two stages which

include sampling ‘existing features’ and ‘new features’; in both cases the latent variables

xkn are marginalized out. The posterior distribution over the existing features zkn is

Bernoulli distributed:

zkn|yn, xn,wk, σ
2 ∼

Bernoulli
(
P (yn|zkn = 1) P (zkn = 1|zk−n)

η

)

=Bernoulli






mk−n

N
exp

(
1

2σ2(σ2+1)

(
yTnwk

))(
σ2

σ2+1

) 1
2

mk−n

N
exp

(
1

2σ2(σ2+1)
(yTnwk)

) (
σ2

σ2+1

) 1
2 + 1




 ,

(5.13)

where η = P (yn|zkn = 1) P (zkn = 1|zk−n) + P (yn|zkn = 0) P (zkn = 0|zk−n), and

mk−n =
∑

i ̸=n zki.

Then, we sample κ number of new features with κ ∼ Poisson
(
α
N

)
, where we main-

tain κ > 0 or κ+K ≤ Kmax. For observed data point n, the posterior distribution over

the new features are:

zK+j,n|yn, xn,wk, σ
2 ∼

Bernoulli






exp
(

1
2σ2(σ2+1)

∑K+κ

k=K+1

(
yTnwk

)2
)(

σ2

σ2+1

)κ
2

exp
(

1
2σ2(σ2+1)

∑K+κ

k=K+1 (yTnwk)
2
) (

σ2

σ2+1

)κ
2 + 1




 ,

(5.14)

for j = 1, . . . , κ new features.

A Gamma prior is placed on the IBP concentration parameter α with parameters
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{λ, µ}:

P (α|λ, µ) = µλ

Γ (λ)
(α)λ−1 exp (−µα) ,

which results in the following posterior distribution:

P (α|λ, µ,Y,W,X,Z) =
µλ

Γ (λ)
(α)λ−1 exp [−µα]

× exp (−αHN)α
K ×

(
K∏

k=1

(mk − 1)! (N −mk)!

(N)!

)

∝ (α)λ+K−1 exp (−α (HN + µ)) ,

(5.15)

which is still a gamma distribution with parameters λpost = λ + K , µpost = HN + µ

andHN =
∑N

n=1
1
n
. The complete algorithm for the proposed isPPCA is summarised in

Algorithm 5.

Algorithm 5 Gibbs sampling pseudocode for isPPCA.
Input: Y,Θ,MaxIter, Kmax

Initialise: Sample a random (Kmax ×N) binary matrix Z and initialize W using PCA
for iter← 1 to MaxIter
for n← 1 to N

for k ← 1 to K

Sample zkn using equation (5.13)
Sample κ ∼ Poisson

(
α
N

)

Accept κ new features with probability from equation (5.14) and update K accordingly
for n← 1 to N

for k ← 1 to K

if zkn = 1
Sample xkn using equation (5.11)

Sample W using equation (5.10)
Sample σ2 using equation (5.12)
Sample α using equation (5.15)

5.6.2 Adaptive PPCA

In many common PPCA applications, constraints on the latent feature dimensional-

ity occur naturally. In data visualisation, we are mostly interested in reducing high-

dimensional data down to two or three dimensions; in regression problems when PCA

is used to remove multicollinearity from input features, the output dimensionality is

usually fixed to D (the dimensionality of the input). In these scenarios a multivariate
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hypergeometric prior on latent variables {zn}Nn=1 would allow for explicit control over

the number of latent subspaces; we call this the adaptive PPCA (aPPCA) [4]. K denotes

the number of unique orthogonal linear subspaces which we will use to reduce the orig-

inal data into the lower dimensional space; each input data point can be associated with

a different subset of L subspaces, selected from a total of K subspaces. So, any single

point is actually represented by lower dimensional spaces subsets of RL. Note that the

orthogonality assumption wi ⊥ wj ∀i ̸= j for the columns of W implies that K ≤ D.

The multivariate hypergeometric prior allows updates of z1,...,N across N in paral-

lel, since the number of observed data points assigned to a latent subspace no longer

implies higher probability of assigning a new data point to that subspace, i.e., no re-

inforcement effect. Instead, for each n = {1, . . . , N}, we learn zn by sampling the L

indices {l1, . . . , lL} from categorical distribution; this is highlighted in Algorithm 6.

Algorithm 6 Update latent variables {zn}Nn=1

for n← 1 to N

Set zn = 0
for i← 1 to L

Sample li ∼ Categorical
(

(1−z1n) exp
(

(yTnw1)
2
)

∑

k(1−zkn) exp((yTnw1)
2)
, . . . ,

(1−zKn) exp
(

(yTnwK)
2
)

∑

k(1−zkn) exp((yTnwK)2)

)

Set zlin = 1

In dimensionality reduction applications we often assume L being two or three,

hence l1 might indicate the x-axis, l2 the y-axis and l3 the z-axis of the lower-

dimensional subspace. A Gibbs sampler for the aPPCA is suggested in Algorithm 7.

Algorithm 7 Pseudocode for inference in parametric aPPCA using Gibbs sampling.
Input: Y,Θ,MaxIter
Initialise: Sample a random (K ×N) binary matrix Z and initialise W using PCA

for n← 1 to N

for k ← 1 to K

if zkn = 1
Sample xkn using equation (5.11)

Sample z1,...,N using Algorithm 6
Sample W using equation (5.10)
Sample σ2 using equation (5.12)
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MNIST data set First, we look at subspace sharing of MNIST digits. Note that with

PCA we project each data point down onto the same two orthogonal principal compo-

nents preserving most variance and we display the projections in a single 2-dimensional

plot. With aPPCA we can still project each point onto L = 2 orthogonal principal

components, but the components are not all constrained to be shared for all the data if

K > L. For more intuitive visualisation, we first use a 2-layer multilayer perceptron

variational autoencoder (VAE) [112] to reduce the dimension of 10,000 MNIST digits.

The 784-dimensional data is reduced with the VAE to 10 dimensions and then we train

parametric aPPCA with K = 3 and L = 2 to visualise the digits in the latent space.

We will assume that subspace 1 is spanned by the inferred features2 1 and 2; subspace

2 by features 2 and 3; subspace 3 by features 1 and 3. Note that all pairs of subspaces

share one of their principal axes. In Figure 5.4 we display the reduced data in each of

these subspaces where we can see an increased separation between many of the distinct

clusters of different digits. From Figure 5.5 we can see that distinct geometric properties

of digits are encoded in the identified subspaces. Figure 5.5 shows randomly selected

digits from each subspace and we can see that most digits in subspace 1 are written in

the thicker font; most digits in subspace 3 are slanted. The visualisation also reduces

the crowding effect of PCA and produces multiple 2-dimensional plots which jointly

decompose the data and intuitively organise the observed data.

COIL-20 data set We consider another data visualisation example, this time using data

from the Columbia University Image Library (COIL-20) [113]. The data set contains low-

resolution images (32 × 32 pixels) of 20 different objects. The objects are placed on a

motorised turntable against a blank background and the turntable is rotated 360 degrees

to vary object pose with respect to a fixed camera. 72 images of each object are taken,

at pose intervals of 5 degrees rotation and the images are size normalised. This means

that objects which are very similar at different view angles will result in very similar

72-image observations.

First, we reduce all the 1440 images onto the two principal components which are
2 Features is a general term, however in this context each feature is a principal component.
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each 2-dimensional subspace, the different object projections are easier to separate and

different objects with similar projections also have intuitive image similarity under a

rotation angle.

Interpreting global structure in manifold embedding Toy problems such as COIL-

20 have been used to showcase manifold embedding methods such as t-SNE [2] and

more recently UMAP [81]. Empirically, both t-SNE and UMAP often lead to very good

class separability in the lower dimensional projections, particularly in scenarios where

class separability in the original high-dimensional data is good (i.e., such as for COIL-

20). At the same time, it is well known that many manifold embedding algorithms such

as UMAP and t-SNE do not preserve the global structure of the data manifold, unlike

linear methods such as PCA and multidimensional scaling, or kernel space models such

as Gaussian process latent variable models. This often leads to lower-dimensional pro-

jections which reflect class separability well when captured in localised regions of the

manifold (such as inMNIST and COIL-20) but do not capture similarities across different

classes adequately. To illustrate, Figure 5.7 shows the two-dimensional projections of

COIL-20, obtained using UMAP. Figure 5.7c) shows objects from the same class are as-

sociated with the same colour. Certain objects have been separated into 2 or 3 clusters

(i.e., the duck and the bowl), depending on the angle of view, but if the aim is object

classification based on the two-dimensional embedding of the data, the task is nearly

trivial. The challenge is less clear if we are looking to uncover latent structures between

the objects.

[81] has suggested using PCA to reduce data onto its first three PCs and colour

UMAP embeddings using RGB values defined by the 3D PCA projections of each point.

This approach suggests that points close in the PCA projection of the data would also

have a similar colour. By contrast, as colours transition, this means that data points

are projected far apart on some of the PCs. The problem with using PCA as diagnostics

for UMAP projections in this manner is that we are likely to crowd observations, over-

estimating proximity between most points due to the simplistic, global assumptions of

PCA. If we are interested in using manifold embedding methods such as UMAP, which
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(a) UMAP: colored by aPPCA embeddings

(b) UMAP: colored by shared subspaces (c) UMAP: colored by classes

Figure 5.7: 2D projections of the COIL-20 data set images using UMAP. The x-axis and
y-axis are determined based on the UMAP projection. In (a) the colours en-
code the non-zero 3D projection of the points performed using aPPCA. Each
point is associated with exactly three sparse PCs, but the total number of
components is larger. In (b) the colours encode subspace sharing with the
same colours (i.e., points in the same colour share at least two sparse PCs).
In (c) the colours encoded indicate the object classes.
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Figure 5.8: Example images from different object classes in the COIL-20 data set, with
shared subspaces and proximity in the three-dimensional orthogonal aPPCA
projection of input images. Proximity was defined with basic K-means clus-
tering of the lower dimensional projections, where Figure 5.6 shows how
clustered specific subspaces are. Note that objects sharing subspaces are
merely estimated to share a covariance structure.

preserve the local structure of the original manifold, we can instead use piecewise lin-

ear methods such as aPPCA, which capture the global structure of the manifold, and use

these to annotate the 2D UMAP projections (Figure 5.7b). In this figure, we use different

symbols to denote points associated with different subspaces; the colours depend on the

3D projection obtained with a single run of aPPCA with K = 4 and L = 3 (i.e. lead-

ing to four subspaces spanned by sparse PCs {1, 2, 3}; {2, 3, 4}; {1, 2, 4} and {1, 3, 4}).

Note that under this diagnostic, similar colours (in RGB values) indicate similarity in

the reduced form. We can see that aPPCA much of the omitted cross-object similarities

is specific to certain rotations: the rotated Maneki-neko (i.e., lucky cat figurine) and

cylindrical bottle; the duck toy and the similar shape wooden part; the different clus-

ters of bowl images and others. To further aid intuition, we have also included images

of rotated object similarities identified using subspace decomposition diagnostics with

aPPCA, see Figure 5.8.

Data pre-processing

Another ubiquitous use of PCA is data whitening. This is an often-used pre-processing

step that aims to decorrelate the observed data to simplify subsequent processing and

analysis, for example, image data tends to have highly correlated adjacent pixels. In this

capacity, PCA works by ’rotating’ the data in observation space, retaining dimension-

ality unlike with visualisation applications.

Here we show a simple example demonstrating how aPPCA can be used to do more

effective local whitening which can lead to more accurate and interpretable supervised
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A key feature of the aPPCA for localised data whitening is that it estimates more

robust subspaces which can be seen in the smaller number of subspaces (i.e., principal

components or columns of W) required for training of the same classifier, to achieve

better performance. The multilayer perceptron trained on PCA whitened data requires

more subspaces in training to achieve comparable performance.

Blind source separation in fMRI

Functional magnetic resonance imaging (fMRI) is a technique for the non-invasive study

of brain function. fMRI can act as an indirect measure of neuronal activation in the

brain, by detecting blood oxygenation level dependent (BOLD) contrast [114]. BOLD

relies on the fact that oxygenated (diamagnetic) and deoxygenated (paramagnetic) blood

have different magnetic properties. When neurons fire there is a resultant increase in

localised flow of more oxygenated blood, which can be detected using BOLD fMRI.

fMRI time-series data is often represented as a series of three-dimensional images

(see Figure 5.10). However, data can be also represented as a two-dimensional matrix

using vectorised voxel matrices over time (time by voxels). In this representation, each

matrix row contains all voxels from the brain image (or the subset selected for analysis)

from a single time instance. Although useful, fMRI data often suffers from a low image

contrast-to-noise ratio, it is biased by subject head motions, scanner drift (i.e., due to

equipment overheating), and signals from irrelevant physiological sources (cardiac or

pulmonary). Therefore, direct analysis of raw fMRI measurements is rare [115] and do-

main experts tend to work with pre-processed, reduced statistics of the data. In clinical

studies, due to the typical scarcity of fMRI series per subject and the low signal-to-

noise ratio, flexible black-box algorithms are rarely used. The preferred methods for

pre-processing of fMRI series and localisation of active spatial regions of the brain are

variants of linear dimensionality reduction methods such as PCA and FA [115–119].

Typically, of primary interest is the analysis of a representative subset of the inferred

principal components or factors respectively, instead of the use of raw data.

A key problem with this approach is that these linear methods assume that the com-
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ponents/factors are a linear combination of all the data, i.e., in other words, PCA and

FA assume that all components are active for the full duration of the recording. Com-

mon implementations for fMRI series [120, 121] might adopt thresholding the inferred

components or using sparse versions of the decomposition techniques. These can still

lead to biased decomposition into components, and we are likely to overestimate the

firing area of the brain for some components and completely overlook functional areas

of the brain which are active for short periods of time. Here, we show that our proposed

adaptive linear methods, are better-motivated models for alleviating this problem and

can infer better localised spatial regions of activation from fMRI. Furthermore, we can

potentially discover novel short-term components in a principled, probabilistic, data-

driven fashion.

As a proof of concept, here we apply aPPCA to fMRI data collected from a single par-

ticipant while exposed to continuous visual stimuli. fMRI data were initially realigned

to correct for subject motion and registered to a group template (Montreal Neurological

Institute Template). Using a 3T Siemens scanner, a whole-brain image with a voxel

resolution of (2× 2× 2) mm was acquired every 0.8 seconds. The data had 215, 302

voxels and 989 time instances. aPPCA decomposition was performed by treating time

instances as features, which is a standard procedure in the neuroimaging field. For

aPPCA we used K = 500 unique components and constraint of L = 200 components,

which were selected to achieve component similarity with the benchmark and enable

visually intuitive comparisons. We also performed PPCA with K = 200 components

for comparison, see Figure 5.11.

The figure shows the component most associated with the task estimated both with

aPPCA and PPCA. aPPCA results in sparser maps across space, which enhance local-

isation. This sparsity increases with higher numbers of components that explain less

variance in the data. This can be useful for identifying noisy components and brain ar-

eas that are only transiently active during task performance. We also show the corrected

t-statistic map (Figure 5.11) which shows the voxels that have a significant correlation

with the visual stimuli. The map is family-wise error (FWE) rate corrected at p < 0.05
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at voxel threshold p < 0.001. One benefit of decomposition methods versus standard

correlation methods is that they do not need a predefined model of assumed task acti-

vation.

Direct quantitative evaluation of pre-processing tools for fMRI data is an open prob-

lem, due to the lack of a clear ground-truth definition of brain-activity-related compo-

nents. We have measured the mean reconstruction error across all 215, 302 voxels as

well as the standard deviation across voxels. We find that the highest error with the

highest standard deviation (i.e. average root mean square error (RMSE) of 16.5, the

standard deviation of RMSE of 4.8) was obtained using PPCA. aPPCA reconstruction

gradually reduces these errors depending upon the ratio ofK and L used, with the best

scoring reconstruction having an average RMSE of 14.1 and standard deviation RMSE

(across voxels) of 3.0. The lower standard deviation of error across voxels supports

our hypothesis of better-preserved local region information using aPPCA. Due to the

simplicity of the imaging setup, both methods were able to identify components highly

correlated to the stimuli, see Figure 5.11. The typical goal for experts would be to exam-

ine functions of the specific brain regions or networks, as well as potentially affected

areas of the brain after head trauma or stroke.

The common analysis practice would be to threshold the observation-specific load-

ings (i.e., reduced form data) and only consider voxels that significantly contribute to

selected subsets of components. The adaptive nature of aPPCA allows us to infer the

voxels association with specific components (i.e., Z switches off voxels not part of a

component) in a principled fashion as a part of a fully probabilistic model. In addition,

the experimental user has explicit control over the contrast voxels used in different com-

ponents (ratio ofK andL) and this can be useful for achieving better spatial localisation,

without thresholding which is an inherently subjective procedure.
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5.7 Discussion

In this chapter, we have studied generic discrete latent variable augmentation for ubiq-

uitous linear Gaussian methods applied for feature learning, whitening, and dimension-

ality reduction applications. The shortcomings of existing linear Gaussian methods are

showcased, and the alternative models are derived using the multivariate hypergeomet-

ric distribution. This creates two novel models, the aFA and the aPPCA model which

can be trained efficiently yet overcome the inherent over-partitioning in beta processes

and allows for more flexible regularisation of the model capacity, compared to Beta-

Bernoulli models. The proposed models can be extended to many other related methods

such as generalised linear Gaussian models, Gaussian process latent variable models

(GPLVMs), kernel PCA methods, and others. [122] has already introduced the problem

of handling discontinuity in GPLVMs and proposed a simple spike and slab prior to aug-

ment the continuous latent variables in GPLVMs. Augmenting GPLVMs with discrete

multivariate hypergeometric feature allocation indicators, would in principle, allow for

a richer and more compact model of the manifold using a smaller number of underlying,

feature-specific Gaussian processes.

In the experiments, we show that compared to the other variants of FA, the aFA

gives the lowest reconstruction error. Furthermore, the aFA was applied to nearly raw

digits to show that images of visually similar digits share more factors than visually

distinct digits. For the aPPCA model, we have also proposed efficient practical infer-

ence methods for distributions on Stiefel manifolds. The utility of the proposed tools

is demonstrated on a wide range of synthetic latent feature Gaussian data sets, MNIST

handwritten digit images, COIL-20 object images, and brain imaging fMRI data. The

synthetic data study shows that a wide range of feature allocation distributions can

be captured with a multivariate hypergeometric model. We have applied aPPCA to

MNIST variational autoencoder projections, to show that it can be used to identify im-

ages sharing clear geometric features. We conclude with an application of aPPCA to

a widely encountered problem in brain imaging with fMRI and demonstrate an accu-

rate decomposition of active spatial regions in the brain during different stimuli (or at
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rest). We also demonstrate that this discrete-continuous decomposition leads to more

accurate localisation of active brain regions. This finding has the potential to lead to

significant improvements in analysis pipelines for fMRI data for neurological screening

and cognitive neuroscience applications.
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Figure 5.11: Lower dimensional fMRI recording reduced across time, plotted against the
subject brain. The fMRI time series of length T is reduced toK components
and here we display the single component most associated with the stim-
uli during the experiment. The top panel displays the reduced projection
estimated using aPPCA and the middle panel is the projection estimated
using PPCA. The larger number of grey regions indicates that aPPCA pro-
jection better localises the regions of the brain fluctuation through time,
as a response to the visual stimuli. Reference regions of activation can be
seen from the t-map in the bottom panel displaying the correlation of the
component with the ground-truth visual stimuli.
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Chapter 6

Bayesian nonparametric extensions

The processes discussed in Section 2.2 have been used extensively as priors on many dif-

ferent applications such as (not limited to) clustering [55, 123], dimensionality reduction

[85, 106, 124], hidden Markov models [125], and more recently model misspecification

[78]. However, all these applications restrict the latent space to be binary, for example in

clustering an observation can either belong to a cluster or not belong to a cluster. This is

often too restrictive, as one may want the latent space to include additional information

such as the level of membership to a cluster; this can be done if the latent space is no

longer binary.

[19] proposed the beta-negative-binomial process to represent the latent space to

be count in modelling document data, however, sampling from such a process requires

inefficient sampling techniques such as stick-breaking. Therefore, this chapter builds

upon the work proposed in [6, 7] by introducing two novel marginal processes which

generalise the Indian buffet processes from Section 2.2. We first introduce two Poisson

point processes, the first process is called the discrete marked beta-binomial process, and

the second process is called the marked beta-negative-binomial process. We then derive

a marginal process that allows for efficient sampling for the posterior, we call these the

multi-scoop Indian buffet process and the infinite-scoop Indian buffet process; the name

is motivated by the Indian buffet process metaphor used to describe the beta-Bernoulli

process; which is a special case of the proposed processes.
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6.1 Discrete marked beta-binomial process

6.1.1 Discrete marked beta process

The discrete marked beta process (dmBP) is similar to the beta process discussed in section

2.2.2, however a set-of-three of points {(θk, πk,mk)}∞k=1 are drawn form it; such that

(θk, πk,mk) ∈ Ω × [0, 1] × N0 for all k. These points are drawn from Poisson process

with the Lévy measure:

ν (dθ, dπ, dm) = α (θ) π−1 (1− π)α(θ)−1
dπH0 (dθ)M0 (dm) ,

where α (·) is a concentration function,H0 is a continuous measure andM0 is a discrete

measure. Draws from the dmBP are:

MH|α0.M0H0 ∼dmBP (α0,M0H0) ,

MH =
∑

k

πkδ(mk,θk),

where the concentration function α (·) = α0 ∈ R
+ is now a concentration parameter.

6.1.2 Binomial process

Points from the Binomial process (BinP) are drawn from Poisson process with the Lévy

measure:

λ (dθ, dπ, dm) =
m∑

i=1

δi (dπ)H (dθ) dm.

Note that the above is equivalent to sampling from m Bernoulli processes (see Sec-

tion 2.2.2). Draws from the binomial process can be represented as:

Bn|MH ∼ BinP (MH) ,

Bn =
∑

k

bnkδ(mk,θk),

bnk|mk, πk ∼ binomial (mk, πk) ,
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where points (θk, bnk) ∈ Ω× {0, 1, 2, . . . ,mk}.

6.1.3 Conjugacy

The discrete marked beta process is conjugate to the binomial process. Let

MH|α0,M0H0 ∼ dmBP (α0,M0H0) and let {Bn}Nn=1|MH
i.i.d.∼ BinP (MH) be N in-

dependent samples from the binomial process (with hazard measure MH), then the

posterior update on MH is still a discrete marked beta process:

MH|MNHN , αN (θ) {Bn}Nn=1 ∼ dmBP (αN (θ) ,MNHN) ,

where:

MNHN =
α0

α (θ)
M0H0 +

∑

k

nk

α (θ)
δ(mk,θk),

αN (θ) =α0 +Nmk,

where nk =
∑

n bnk is the number of times in which the atom at location θk appears in

{Bn}Nn=1.

It is useful to marginalise over the MH and work directly with the posterior

marginal process. However, this is impossible as this marginal is not available in closed

form. Therefore, for the remainder of the section, we’ll focus on a special case of this

process, which is the beta-binomial process.

6.1.4 Special case: beta-binomial process

The beta-binomial process is a special case of the discrete marked beta-Binomial pro-

cess from Section 6.1, where the discrete marked beta process is replaced with the beta

process.

Beta process A set-of-two of points {(θk, πk)}∞k=1 are drawn from beta process; such

that (θk, πk) ∈ Ω × [0, 1] for all k. These points are drawn from Poisson process with

A.Farooq, PhD Thesis, Aston University 2022 105



the Lévy measure:

ν (dθ, dπ) = α (θ) π−1 (1− π)α(θ)−1
dπH0 (dθ) ,

where α (·) is a concentration function, H0 is a continuous measure. Draws from the

BP are:

H|α0, H0 ∼ BP (α0, H0) ,

H =
∑

k

πkδθk ,

where the concentration function α (·) = α0 ∈ R
+ is now a concentration parameter.

Binomial process Draws from the binomial process can be represented as:

Bn|mH ∼ BinP (mH) ,

Bn =
∑

k

bnkδθk ,

bnk|m,πk ∼ binomial (m,πk) ,

where points (θk, bnk) ∈ Ω× {0, 1, 2, . . . ,m} and m ∈ N0.

Conjugacy The beta process is conjugate to the binomial process, let H|a0, H0 ∼

BP (α0, H0) and let {Bn}Nn=1|mH
i.i.d.∼ BinP (mH) be N independent samples from the

binomial process (with hazard measure mH), then the posterior update on H is still a

beta process:

H|{Bn}Nn=1, αN , HN ∼ BP (αN , HN) ,

where:

HN =
α0

αN

H0 +
∑

k

nk

αN

δ(θk),

αN =α0 +Nm,
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where nk =
∑

n bnk is the number of times in which the atom at location θk appears in

{Bn}Nn=1.

6.1.5 Distribution on infinite count matrices

In this section we’ll derive the probability distribution over an infinite count matrix; this

would generalise the work done in [8].

Finite Let π = [π1, . . . , πK ] be a K-dimensional vector; where πk ∈ [0, 1] ∀k. The

prior distribution over each πk is the beta distribution:

πk|α ∼ Beta
( α

K
, 1
)

,

where α > 0 is a hyperparameter. Let Z be a (N ×K) where each element znk ∈

{0, 1, . . . ,m} is independently and identically sampled from a binomial distribution:

znk
i.i.d.∼ binomial (m,πk) ,

where n ∈ {1, . . . , N}, k ∈ {1, . . . , K}, andm ∈ N0 is the ‘number of trails’ parameter

of the binomial distribution. From a latent feature perspective znk can be interpreted as

the number of times an object n possessing feature k. The marginal likelihood of Z is:

P (Z|, α,m)

=
K∏

k=1

∫
(

N∏

n=1

P (znk|πk,m)

)

P (πk|m) dπk

=
D∏

k=1

(
∏

n

(m!)

(m− znk)! (znk)!

)
( α

K

) Γ
(
nk +

α
K

)
Γ (Nm− nk + 1)

Γ
(
α
K
+Nr + 1

) ,

(6.1)

where nk =
∑N

n=1 znk; see Appendix D.1 for the derivation.

Left order equivalence The marginal probability of the count matrix Z does not de-

pend on the order of the features i.e., features are exchangeable. This results in having

multiple matrices Zwhich encode the same feature assignments for a number of objects,
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of [Z] = K!
∏(m+1)N−1

h=0 Kh!
is the number of matrices that map to the same left-ordered form

where Kh denotes the number of columns with history h.

Infinite count matrix By using the methods from above, the marginal probability of

lof-equivalent class of binary matrices [Z] is:

P ([Z] |α,m) =
∑

Z∈[Z]

P (Z|α,m)

=
K!

∏(m+1)N−1
h=0 Kh!

×
K∏

k=1

(
∏

n

(m!)

(m− znk)! (znk)!

)
( α

K

) Γ
(
md +

α
K

)
Γ (Nm− nk + 1)

Γ
(
α
K
+Nm+ 1

) ,

and as K →∞, the above becomes:

lim
K→∞

(P ([Z] |α,m)) =
αK+

∏(m+1)N−1
h=1 Kh

× exp (−αHNm)
K+
∏

k=1

∏N

n=1

(
m

znk

)
(nk − 1)! (Nm− nk)!

(Nm)!
,

(6.2)

where HNm =
∑Nm

j=1
1
j
; also known as the (Nm)th harmonic number; see Appendix

D.1 for the derivation.

6.1.6 Multi scoop Indian Buffet Process

In this section we’ll derive the marginal process of the beta-binomial process. We will

call this the the multi scoop Indian Buffet Process (msIBP) as the IBP is the special case

of it. To derive the process we’ll continue to use a cuisine metaphor of an Indian buffet

with an infinite number of dishes, where a customer can take multiple scoops of each

dish; the dish refers to a feature, and the scoop refers to the number of times a feature

is active. This section will be split up into three sub-sections.
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New customers

When the first customer enters a buffet, they are given m ‘chances’ to sample a new

dish (which has previously not been sampled); each chance is a sample from a Poisson

distribution, the number of new dishes sampled by the first customer on the jth chance

are denoted as Knj
new, which is sampled from:

K1j
new ∼ Poisson

(
α

1m− (m− j)

)

,

where α > 0 is some constant. More generally, the m chances for the first customer

are:

K11
new ∼ Poisson

(
α

1m− (m− 1)

)

,

K12
new ∼ Poisson

(
α

1m− (m− 2)

)

,

...

K1m
new ∼ Poisson

( α

1m

)

.

The m chances for the nth customer are:

Kn1
new ∼ Poisson

(
α

nm− (m− 1)

)

,

Kn2
new ∼ Poisson

(
α

nm− (m− 2)

)

,

...

Knm
new ∼ Poisson

( α

nm

)

.

The joint distribution of Kij
new for i ∈ {1, . . . , N} and j ∈ {1, . . . ,m} is:

P
(

K11
new, ..., K

1m
new,..., K

N1
new, ..., K

Nm
new

)

=
exp

(
−α

1

) (
α
1

)K11
new

K11
new!

× ...× exp
(
− α

Nm

) (
α

Nm

)KNm
new

KNm
new !

.
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The exponent of which is:

exp
(

−α

1

)

×,..,× exp
(

− α

Nm

)

= exp
(

−α
(

1 +
1

2
+

1

3
+ ...+

1

Nm

))

= exp (−αHNm) ,

and the total number of dishes sampled are K+ = K11
new + ... + K1m

new + ... + KN1
new +

...+KNm
new , which results in:

P
(

K11
new, ..., K

1m
new, ..., K

N1
new, ..., K

Nm
new

)

= exp (−αHNm)

(

αK+

∏N

i=1

∏m

j=1 K
ij
new!

)

×




1

∏N

i=1

∏m

j=1 (im− (m− j))K
ij
new



 .

Existing dishes

Each customer is allowed to try a total of m number of scoops on every existing dish

(i.e., a dish that has been already sampled), such that customer nwill take the jth scoop

from dish k with probability nk

nm−(m−j)
, where nk is the number of scoops taken from

dish k from all customers, and by construction j ∈ {0, 1, . . . ,m}. This information is

stored in a (N ×K+) count matrix Z; where znk ∈ {0, 1, . . . ,m} denotes the number

of scoops customer n had of dish k. Then the joint probability of the number of scoops

for dish k is:

P (z1k, . . . , zNk) =

(
N∏

n=1

(m!)

(m− znk)! (znk)!

)

(nk − 1)! (Nm− nk)!

(Nm)!
× (im− (m− j)) ,

where the left-most component of the product takes the different permutations of cus-

tomer n into consideration (i.e., customer n will try znk scoops out of m total scoops

for dish k), and the right-most component is there to offset the fact that customer i

first sampled dish k on the jth chance. More generally, for N customers we obtain the

following distribution overall K+ existing dishes:

K+
∏

k=1

((
N∏

n=1

(m!)

(m− znk)! (znk)!

)

(nk − 1)! (Nm− nk)!

(Nm)!

)

×
(

N∏

i=1

m∏

j=1

(im− (m− j))K
ij
new

)

.
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Combining existing and new dishes

By combining the results from the two previous sections, the probability of a particular

count matrix Z being produced by this process is:

P (Z|α) =

exp (−αHNm)

(

αK+

∏N

i=1

∏m

j=1 K
ij
new!

)
K+
∏

k=1

( ∏N

n=1

(
m

znd

)
(nk − 1)! (Nm− nk)!

(Nm)!

)

,

As discussed in the section above, the extended lof (·) can be used to determine the

number of different matrices that encode the same feature assignment; see Figure 6.1.

The cardinality of [Z] =
∏N

i=1

∏m
j=1 K

ij
new!

∏(m+1)N−1
h=0 Kh!

is the number of matrices that map to the same

left-ordered form (i.e., the number of matrices that will encode the same feature assign-

ment); where Kh denotes the number of columns with history h. Then the probability

of a particular feature assignment [Z] being produced by this process is:

P ([Z]) = exp (−αHNm)

(

αK+

∏(m+1)N−1
h=0 Kh!

)
K+
∏

k=1

( ∏N

n=1

(
m

znd

)
(nk − 1)! (Nm− nk)!

(Nm)!

)

,

which is the same as the infinite count matrix described in equation (6.2).

Posterior distribution

The posterior distribution for znk given Z−(nk) (where Z−(nk) is the matrix Z without

znk) is:

P (znk|Z−nk) =
(r!)

(r − znk)! (znk)!

(n−nk + znk − 1)! (Nr − n−nk − znk)!

(Nr)!

× (Nr − r)!

(n−nk − 1)! (Nr − r −m−n,d)!
,
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where n−nk =
∑

j ̸=n zjk is the number of scoops of dish k that have been taken without

the nth customer

P (znk|Z−nk) =
(m!)

(m− znk)! (znk)!

(n−nk + znk − 1)! (Nr − n−nk − znk)! (Nr −m)!

(Nm)! (n−nk − 1)! (Nr −m− n−nk)!

=
Γ (m+ 1)

Γ (m− znk + 1)Γ (znk + 1)

Γ (n−nk + znk) Γ (Nr − n−nk − znk + 1)

Γ (Nm+ 1)

× Γ (Nm−m+ 1)

Γ (n−nk) Γ (Nm−m− n−nk + 1)

= BetaBinomial (n−nk, (N − 1) r + 1− n−nk) ,

where BetaBinomial (·, ·) is the beta-binomial distribution.

6.2 Marked beta-negative-binomial process

6.2.1 Marked beta process

Initially proposed by [7], the marked beta process (mBP) is similar to the beta process

discussed in section 6.1, however a set-of-three of points {(θk, πk, rk)}∞k=1 are drawn

form it; such that (θk, πk, rk) ∈ Ω× [0, 1]× R
+ for all k. These points are drawn from

Poisson process with the Lévy measure:

ν (dθ, dπ, dm) = α (θ) π−1 (1− π)α(θ)−1
dπH0 (dθ)R0 (dr) ,

where α (·) is a concentration function, and both R0 & H0 are continuous measures.

Draws from the mBP are:

RH|α0, R0H0 ∼mBP (α0, R0H0) ,

RH =
∑

k

πkδ(rk,θk),

where the concentration function α (·) = α0 ∈ R
+ is now a concentration parameter.
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6.2.2 Negative-binomial process

Points from the negative-binomial process (Neg-BinP) are drawn from Poisson process

with the Lévy measure:

λ (dθ, dπ, dr) =

∑i
j=i−1 δj<r
∑

i=1

δi (dπ)H (dθ) dr,

where δ0 = 0. Note that this is equivalent to continuously sampling from the Bernoulli

process (see Section 2.2.2) till r failures have been observed. Draws from the negative-

binomial process can be represented as:

Bn|RH ∼ Neg− BinP (RH) ,

Bn =
∑

k

bnkδ(rk,θk),

bnk|rk, πk ∼ negative− binomial (rk, πk) ,

where points (θk, bnk) ∈ Ω× {0, 1, 2, . . . }

It is useful to marginalise over the MH and work directly with the posterior

marginal process. However, this is impossible as this marginal is not available in closed

form. Therefore, for the remainder of the section, we’ll focus on a special case of this

process, which is the beta-binomial process.

6.2.3 Conjugacy

The marked beta process is conjugate to the negative-binomial process. Let RH ∼

dmBP (α,R0H0) and let B1,...,N
i.i.d.∼ Neg− BinP (RH) beN independent samples from

the negative-binomial process (with hazard measureRH), then the posterior update on

RH is still a marked beta process:

RH|{Bn}Nn=1, αN , RNHN ∼ mBP (αN , RNHN) ,
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where:

RNHN =
α0

αN

R0H0 +
∑

k

nk

αN

δ(rk,θk),

αN (θ) =α0 + nk +Nrk,

where nk =
∑

n bnk is the number of times in which the atom at location θk appears in

{Bn}Nn=1.

6.2.4 Special case: beta-negative-binomial process

The beta-negative-binomial process is a special case of the marked beta-negative-

binomial process from Section 6.2, where the marked beta process is replaced with the

beta process.

Beta process A set-of-two of points {(θk, πk)}∞k=1 are drawn from beta process; such

that (θk, πk) ∈ Ω × [0, 1] for all k. These points are drawn from Poisson process with

the Lévy measure:

ν (dθ, dπ) = α (θ) π−1 (1− π)α(θ)−1
dπH0 (dθ) ,

where α (·) is a concentration function, H0 is a continuous measure. Draws from the

BP are:

H ∼BP (α0, H0) ,

H =
∑

k

πkδθk ,

where the concentration function α (·) = α0 ∈ R
+ is now a concentration parameter.
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Negative-binomial process Draws from the negative-binomial process can be repre-

sented as:

Bn|mH ∼ Neg− BinP (mH) ,

Bn =
∑

k

bnkδθk ,

bnk|m,πk ∼ negative− binomial (m,πk) ,

where points (θk, bnk) ∈ Ω× {0, 1, 2, . . . } and r > 0.

Conjugacy The beta process is conjugate to the negative-binomial process, let

H|α0, H0 ∼ BP (α0, H0) and let {Bn}Nn=1|rH
i.i.d.∼ Neg− BinP (rH) be N independent

samples from the binomial process (with hazard measure rH), then the posterior update

on H is still a beta process:

H|{Bn}Nn=1, αN , HN ∼ BP (αN , HN) ,

were:

HN =
α0

αN

H0 +
∑

k

nk

αN

δ(θk),

αN =α0 + nk +Nr,

where nk =
∑

n bnk is the number of times in which the atom at location θk appears in

{Bn}Nn=1.

6.2.5 Distribution on infinite count matrices

In this section, we’ll derive the probability distribution over an infinite count matrix.

Finite Let π = [π1, . . . , πK ] be a K-dimensional vector; where πk ∈ [0, 1] ∀k. The

prior distribution over each πk is the beta distribution:

πk|α ∼ Beta
( α

K
, 1
)

,
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where α > 0 is a hyperparameter. Let Z be a (N ×K) where each element znk ∈

{0, 1, . . . } is independently and identically sampled from a negative-binomial distribu-

tion:

znk|m,πk
i.i.d.∼ negative− binomial (m,πk)

where n ∈ {1, . . . , N}, k ∈ {1, . . . , K}, and for simplicity we restrict r ∈ N0; although

by definition r > 0 is also allowed. From a latent feature perspective znk can be inter-

preted as the number of times object n possessing feature k. The marginal likelihood of

Z is:

P (Z|α, r) =
K∏

k=1

∫
(

N∏

n=1

P (znk|πk, r)

)

P (πk|α) dπk

=

[
N∏

n=1

(
znk + r − 1

znk

)]( α

K

) Γ
(
nk +

α
K

)
Γ (Nr + 1)

Γ
(
nk +

α
K
+Nr + 1

) ,

(6.3)

where nk =
∑N

n=1 znk; see Appendix D.2 for the derivation.

Left order equivalence We use the extended left-ordered form lof (·) from Section

6.1.5, however the history for column k is:

Hk =
N∑

n=1

(m+ 1)N−n
znk,

where m is the maximum value of the matrix Z. The cardinality of [Z] = K!
∏(m+1)N−1

h=0 Kh!

is the number of matrices that map to the same left-ordered form; where Kh denotes

the number of columns with history h.

Infinite count matrix By using the methods from above, the marginal probability of

lof-equivalent class of binary matrices [Z] is:

P ([Z] |α,m, r) =
∑

Z∈[Z]

P (Z|α,m)

=
K!

∏(m+1)N−1
h=0 Kh!

K∏

k=1

[
N∏

n=1

(
znk + r − 1

znk

)]( α

K

) Γ
(
nk +

α
K

)
Γ (Nr + 1)

Γ
(
nk +

α
K
+Nr + 1

) ,
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and as K →∞, the above becomes:

lim
K→∞

(P ([Z] |α,m, r)) =
αK+

∏(m+1)N−1
h=1 Kh

× exp (−αHNr)
K+
∏

k=1

(
∏N

n=1

(
znk+r−1

znk

))

(nk − 1)! (Nr)!

(nk +Nr)!
,

(6.4)

where where HNr =
∑Nr

j=1
1
j
; also known as the (Nr)th harmonic number; see Ap-

pendix D.2 for the derivation.

6.2.6 Infinite scoop Indian Buffet Process

In this section, we’ll derive the marginal process of the beta-negative-binomial pro-

cess. We will call this the Infinite scoop Indian Buffet Process (isIBP); this is similar to

the msIBP (from Section 6.1.6), however unlike the binomial distribution the negative-

binomial distribution does not restrict the domain of a random variable, hence we must

not restrict the number of scoops in the process. The process will be defined using a cui-

sine metaphor of an Indian buffet with an infinite number of dishes, where a customer

can take any number of scoops of each dish; the dish refers to a feature, and the scoop

refers to the number of times a feature is active. This section will be split up into three

sub-sections.

New customers

When the first customer enters a buffet, they are given r ‘chances’ to sample a new

dish (which have previously not been sampled); each chance is a sample from a Poisson

distribution, the number of new dishes sampled by the first customer on the jth chance

is denoted as Knj
new,which is sampled from:

K1j
new ∼ Poisson

(
α

1r − (r − j)

)

,
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where α > 0 is some constant and r ∈ N0. More generally, the r chances for the first

customer are:

K11
new ∼ Poisson

(
α

1r − (r − 1)

)

,

K12
new ∼ Poisson

(
α

1r − (r − 2)

)

,

...

K1r
new ∼ Poisson

( α

1r

)

.

The r chances for the nth customer are:

Kn1
new ∼ Poisson

(
α

nr − (r − 1)

)

,

Kn2
new ∼ Poisson

(
α

nr − (r − 2)

)

,

...

Knr
new ∼ Poisson

( α

nr

)

.

The joint distribution of Kij
new for i ∈ {1, . . . , N} and j ∈ {1, . . . , r} is:

P
(

K11
new, ..., K

1r
new, ..., K

N1
new, ..., K

Nr
new

)

=

exp
(
−α

1

) (
α
1

)K11
new

K11
new!

× ...× exp
(
− α

Nr

) (
α
Nr

)KNr
new

KNr
new!

.

The exponent of which is:

exp
(

−α

1

)

×,..,× exp
(

− α

Nr

)

=

exp
(

−α
(

1 +
1

2
+

1

3
+ ...+

1

Nr

))

= exp (−αHNr) ,

and the total number of dishes sampled are K+ = K11
new + ... + K1r

new + ... + KN1
new +
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...+KNr
new, which results in:

P
(
K11

new, ..., K
1r
new, ..., K

N1
new, ..., K

Nr
new

)
= exp (−αHNm)

(

αK+

∏N

i=1

∏r

j=1 K
ij
new!

)

×




1

∏N

i=1

∏r

j=1 (ir − (r − j))K
ij
new



 .

Existing dishes

Each customer continuously takes scoops from an existing dish (i.e., a dish that has

been already sampled) till they fail to take a scoop r number of times. The probability

of customer customer n taking a scoop from dish k is nk

nk+nr−(r−rnk−1)
, where nk is the

number of scoops taken from dish k from all customers, and rnk is a count of the num-

ber of times customer n has failed to take a scoop from dish k; whereby construction

rnk ∈ {0, 1, . . . , r}. This information is stored in a (N ×K+) count matrix Z; where

znk ∈ {0, 1, . . . } denotes the number of scoops customer n had of dish k. Then the joint

probability of a number of scoops for dish k is:

P (z1k, . . . , zNk) =

(
N∏

n=1

(
znk + r − 1

znk

))

(nk − 1)! (Nr)!

(nk +Nr)!
× (ir − (r − j)) ,

where the left-most component of the product takes the different permutations of cus-

tomer n into consideration (i.e., for dish k customer n will try znk scoops out of znk + r

total scoops with the last scoop being failure), and the right-most component is there to

offset the fact that customer i first sampled dish k on the jth chance. More generally,

for N customers we obtain the following distribution overall K+ existing dishes:

(
K+
∏

k=1

(
N∏

n=1

(
znk + r − 1

znk

))

(nk − 1)! (Nr)!

(nk +Nr)!

)

×
(

N∏

i=1

r∏

j=1

(ir − (r − j))K
ij
new

)

.

A.Farooq, PhD Thesis, Aston University 2022 120



Combining existing and new dishes

By combining the results from the two previous sections, the probability of a particular

count matrix Z being produced by this process is:

P (Z) = exp (−αHNr)

(

αK+

∏N

i=1

∏r

j=1 K
ij
new!

)

×
K+
∏

k=1

(∏N

n=1

∏N

n=1

(
znk+r−1

znk

)
(nk − 1)! (Nr)!

(nk +Nr)!

)

.

As discussed in the section above, the extended lof (·) can be used to determine

the number of different matrices that encode the same feature assignment; see Figure

6.1. The cardinality of [Z] =
∏N

i=1

∏r
j=1 K

ij
new!

∏(m+1)N−1
h=0 Kh!

is the number of matrices that map to the

same left-ordered form (i.e., the number of matrices that will encode the same feature

assignment); where Kh denotes the number of columns with history h, and m is the

maximum value of the matrix Z. Then the probability of a particular feature assignment

[Z] being produced by this process is:

P ([Z]) = exp (−αHNr)

(

αK+

∏(m+1)N−1
h=0 Kh!

)

×
K+
∏

k=1

(∏N

n=1

∏N

n=1

(
znk+r−1

znk

)
(nk − 1)! (Nr)!

(nk +Nr)!

)

,

which is the same as the infinite count matrix described in equation (6.4).

Posterior distribution

The posterior distribution for znk given Z−(nk) (where Z−(nk) is the matrix Z without

znk) is:

P (znk|Z−nk) =

[(
znk + r − 1

znk

)]
(n−nk + znk − 1)! (Nr)!

(n−nk + znk +Nr)!
÷ (n−nk − 1)! (Nr − r)!

(n−nk +Nr − r)!

=

[(
znk + r − 1

znk

)]
(n−nk + znk − 1)! (Nr)! (n−nk +Nr − r)!

(n−nk + znk +Nr)! (n−nk − 1)! (Nr − r)!
,

A.Farooq, PhD Thesis, Aston University 2022 121



where n−nk =
∑

j ̸=n zjk is the number of scoops of dish k that have been taken without

the nth customer

P (znd|Z−nk) =

[(
znk + r − 1

znk

)]
(n−nk + znk − 1)! (Nr)! (n−nk +Nr − r)!

(n−nk + znk +Nr)! (n−nk − 1)! (Nr − r)!

=

[(
znk + r − 1

znk

)]
Γ (n−nk + znk) Γ (Nr + 1)Γ (m−n,d +Nr − r + 1)

Γ (n−nk + znk +Nr + 1)Γ (n−nk) Γ (Nr − r + 1)

= BetaNegative− binomial (Nr − r + 1, n−nk) ,

where BetaNegative− binomial (·, ·) is the beta-negative-binomial distribution.

6.3 Discussion

In this chapter, we proposed two novel processesThe first process is the discrete marked

beta-binomial process, its special case the beta-binomial process, and its marginal multi-

scoop IBP (msIBP). This process generalises the work done by [8, 19]. The msIBP can

be used as a prior on the latent space if it is assumed that the latent space consists of

counts which are restricted to some value, i.e., the count of a feature cannot be more

than m ∈ N.

The marked beta-negative-binomial process builds upon the work proposed by [7,

19], where its special case the beta-negative-binomial process, and its infinite scoop IBP

(isIBP) are novel. The isIBP can be used as a prior on the latent space if it is assumed

that the latent space consists of counts which are not restricted to some value, i.e., the

count of a feature has no upper bound.

One extension of this work is to discover the marginal processes of the actual

processes, i.e., the marginal of the discrete marked beta-binomial and marked beta-

negative-binomial process.
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Chapter 7

Summary and future work

In this thesis, we presented novel latent variable models to solve unsupervised problems

like clustering and dimensionality reduction.

In Chapter 3 we proposed a novel mixture model for modelling (in terms of density

estimation or clustering) count data; we call it the Panjer mixture. Unlike other mixture

models, the Panjer mixture model makes no a-priori assumption about the dispersion of

the data, which results in better clustering and density estimation. One promising ex-

tension of this work is to propose a multivariate extension of the Panjer mixture model.

In Chapter 4 we propose a novel approach to robustify models with respect to any

potential likelihood misspesification by using pseudo-points to represent it; this is done

by using the MMD. The proposed method is applied to mixture models, we call this the

mixtures of maximummean discrepancy pseudo-point marginal, a simple EM scheme is

also presented to infer the parameters. One promising future direction of the proposed

approach is to apply this in other domains such as dimensionality reduction or training

variational autoencoders.

In Chapter 5 we proposed two novel dimensionality reduction techniques which

utilise constrained feature allocation induced by the multivariate hypergeometric dis-

tribution; this overcomes the over-partitioning obtained from models which utilise the

beta processes [85]. The use of constrained feature allocation can be applied to models

like the Gaussian process latent variable model (GPLVMs), this will allow for a richer
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andmore compactmodel of themanifold learning using a smaller number of underlying,

feature-specific Gaussian processes.

In Chapter 6 we proposed two novel discrete Bayesian nonparametric priors which

generalise existing Bayesian nonparametric priors. Furthermore, the marginal process

of the special cases was also derived to assist in sampling from these priors. Chapter

6 only derives these processes, and therefore a potential extension of this work is to

apply these priors in applications where the latent space consists of counts; for example

non-negative matrix factorisation of count data, or clustering where the count of the

latent variable controls for the level of ‘intensity’.
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Appendix A

Generalized count mixture models

supplementary material

A.1 Panjer distribution generalisation

This section will show how the Panjer distribution is a generalisation of the binomial,

Poisson and negative-binomial distribution.

Binomial distribution

The PMF of the Panjer distribution (from equation (3.6)) can be re-written as:

P (y|λ, η) =
(

1 +
λ

η

)−η
λy

y!

y−1
∏

i=0

η + i

η + λ

=
λy

y!
(−1)y ηη

(η + λ)η+y (−1)
y

y−1
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i=0

(η + i)

=
1

y!

λy (−η − λ)−η−y

−η−η

y−1
∏

i=0

(−η − i) ,
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if m = −η:

P (y|λ,m) =

(
m

y

)
λy (m− λ)m−y

mm

=

(
m

y
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λy (m− λ)m

(m− λ)y mm
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(
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)(
λ

m− λ

)y (
m

m− λ

)−m

=

(
m

y

)(
λ

m

)y (
m

m− λ

)y (
m

m− λ

)−m

=

(
m

y

)(
λ

m

)y (
m− λ

m

)m−y

=

(
m

y

)

(p)y (1− p)m−y ,

which is the binomial distribution withm number of trails and probability of success p.

Negative binomial distribution

The different terms of the Panjer PMF (from equation (3.6)) can be re-written as:

1

y!

y−1
∏

i=0

(η + i) =

(
η + y − 1

y

)

,

(

1 +
λ

η

)−η

=

(
η

η + λ

)η

,

λy

y−1
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i=0

1

η + λ
=

(
λ

η + λ

)y

,

if r = η:

P (y|r, λ) =
(
r + y − 1

y

)(
r

r + λ

)r (
λ

r + λ

)y

=

(
r + y − 1

y

)

(1− p)r (p)y ,

which is the negative binomial distribution with probability of success p = λ
r+λ

and r

number of failures allowed.

A.Farooq, PhD Thesis, Aston University 2022 151



Poisson distribution

By taking the limit η →∞, the PMF of the Panjer distribution (from equation (3.6)) can

be re-written as:

lim
η→∞

P (y|λ) = lim
η→∞

((

1 +
λ

η

)−η
λy

y!

y−1
∏

i=0

η + i

η + λ

)

=
λy

y!
lim
η→∞

((

1 +
λ

η

)−η k−1∏

i=0

η + i

η + λ

)

=
λy

y!
lim
η→∞





((

1 +
λ

η

)η/λ
)−λ y−1

∏

i=0

η + i

η + λ





=
λy

y!
exp (−λ) ,

which gives the Poisson distribution with rate parameter λ.

A.2 Exponential family of distribution

This section shows how the Panjer distribution cannot be expressed in the exponential

family form which (slightly different notation from equation (2.2)) takes the form:

P (y|θ) = exp (γ (θ)T (y)− A (γ (θ)) + C (y)) ,

where θ is the distributional parameter, γ(·) is the natural parameter, T (·) is the suf-

ficient statistic, A (·) is the log-partition and C (·) is the log-base measure. The log of

which takes the form:

ln P (y|θ) = γ (θ)T (y)− A (γ (θ)) + C (y) .

The same PMF from equation (3.6) will be used throughout this section; however,

the derivations will be done using two cases; each of which has different assumptions

on the η parameter.
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Case 1

Let η > 0, the log of equation (3.6) is:

ln P (y|λ, η) = y ln
(

λ

η + λ

)

− η ln
(

1 +
λ

η

)

− ln (y!) +
y−1
∑

i=0

ln (η + i) ,

which cannot be rewritten in the log exponential family form due to the coupling of the

parameters λ and η. From this, it can be concluded that the Panjer distribution with

η > 0 cannot be expressed in the exponential family form.

Case 2

Let η < −λ, then equation (3.6) can be re-written as:

P (y|λ, η) = λy (−η − λ)−η−y

−η−η

y−1
∏

i=0

(−η − i)
1

y!
,

the log of the above results in:

ln P (y|λ, η) = y ln (λ)− y ln (−η − λ)− η ln (−η − λ) + η ln (−η)

+

[
y−1
∑

i=0

ln (−η − i)

]

− ln (y!)

= y ln
(

λ

−η − λ

)

+ η ln
( −η
−η − λ

)

+

[
y−1
∑

i=0

ln (−η − i)

]

− ln (y!)

= y ln
(

λ

−η − λ

)

− η ln
(

1− λ

−η

)

+

[
y−1
∑

i=0

ln (−η − i)

]

− ln (y!) ,

which cannot be re-written in the log exponential family form due to the coupling of

the parameters λ and η. From this, it can be concluded that the Panjer distribution with

η < −λ cannot be expressed in the exponential family form.
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A.3 Maximum likelihood solution

This section will derive the maximum likelihood updates for the parameters of the Pan-

jer distribution. Throughout this section, it will be assumed that {yn}Nn=1 are some N

samples from the Panjer distribution parameterised by λ and η (see equation (3.6)); the

data likelihood of which is:

P
(
{yn}Nn=1|η, λ

)
=

(

1 +
λ

η

)−Nη N∏

n=1

(

λyn

yn!

[
yn−1
∏

i=0

η + i

η + λ

])

.

A.3.1 Maximum likelihood solution for λ

The log of the data likelihood is:

ln
(
P
(
{yn}Nn=1|η, λ

))
∝ −Nη ln

(

1 +
λ

η

)

+
N∑

n=1

[yn ln (λ)− yn ln (η + λ)]

∝ −Nη ln (η + λ) +
N∑

n=1

[yn ln (λ)− yn ln (η + λ)] ,

where terms that don’t depend on λ have been removed, the derivative with respect to

λ is:

d ln
(
P
(
{yn}Nn=1|η, λ

))

dλ
=
−Nη

η + λ
−
∑N

n=1 yn

η + λ
+

∑N

n=1 yn

λ
.

By setting the derivative to zero:

∑N

n=1 yn

λ
=

Nη +
∑N

n=1 yn

η + λ
,

η + λ

λ
=

Nη +
∑N

n=1 yn
∑N

n=1 yn
,

η

λ
=

Nη +
∑N

n=1 yn
∑N

n=1 yn
− 1

=
Nη

∑N

n=1 yn
,
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which results in the following maximum likelihood update for λ:

λML =

∑N

n=1 yn

N
.

A.3.2 Maximum likelihood solution for η

The maximum likelihood solution update for η will be derived using two cases, each of

which will have a different assumption on the η parameter.

Case 1

Let η > 0, then the data log-likelihood is:

ln
(
P
(
{yn}Nn=1|η, λ

))
∝−Nη [ln (η + λ)− ln (η)]−

N∑

n=1

[yn ln (η + λ)]

+
N∑

n=1

[
yn−1
∑

i=0

ln (η + i)

]

,

where terms that don’t depend on η have been removed, the derivative with respect to

η is:

d ln
(
P
(
{yn}Nn=1|η, λ

))

dη
=

Nλ

η + λ
−N (ln (η + λ)− ln (η))−

∑N

n=1 yn

η + λ

+
N∑

n=1

[
yn−1
∑

i=0

1

η + i

]

=
Nλ−∑N

n=1 yn

η + λ
−N (ln (η + λ)− ln (η)) +

N∑

n=1

[
yn−1
∑

i=0

1

η + i

]

,

by using λ =
∑N

n=1 yn

N
the above can be simplified to:

d ln
(
P
(
{yn}Nn=1|η, λ

))

dη
= −N (ln (η + λ)− ln (η)) +

N∑

n=1

[
yn−1
∑

i=0

1

η + i

]

,
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which has no closed-form solution when set to zero. The second derivative of the data

log-likelihood with respect to η can be written as:

d2 ln
(
P
(
{yn}Nn=1|η, λ

))

dη2
=

Nλ

η (η + λ)
−

N∑

n=1

[
yn−1
∑

i=0

1

(η + i)2

]

.

Case 2

Let η < −λ, then equation (3.6) can be re-written as:

P (y|λ, η) = λy (−η − λ)−η−y

−η−η

y−1
∏

i=0

(−η − i)
1

y!
,

which would result in the following data likelihood:

P
(
{yn}Nn=1|λ, η

)
=

N∏

n=1

λyn (−η − λ)−η−yn

−η−η

1

yn!

[
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(−η − i)

]

=
λ
∑N

n=1 yn (−η − λ)−Nη−
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n=1 yn

−η−Nη

N∏

n=1

[

1

yn!
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∏

i=0

(−η − i)

]

,

the log of which is:

ln
(
P
(
{yn}Nn=1|λ, η

))
∝−

(
N∑

n=1

yn +Nη

)

ln (−η − λ) +Nη ln (−η)

+
N∑

n=1

[
yn−1
∑
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ln (−η − i)

]

,
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where terms that don’t depend on η have been removed, the derivative with respect to

η is:

d ln
(
P
(
{yn}Nn=1|λ, η

))

dη
=− −Nη −∑N

n=1 yn

−λ− η
−N (ln (−λ− η)) +N ln (−η) +N

+
N∑

n=1

[
yn−1
∑

i=0

1

η + i

]

=−N (ln (−λ− η)− ln (−η))− −Nη −∑N

n=1 yn

−λ− η

+
N (−λ− η)

−λ− η
+

N∑

n=1

[
yn−1
∑

i=0

1

η + i

]

,

by using λ =
∑N

n=1 yn

N
, the above can be simplified to:

d ln
(
P
(
{yn}Nn=1|λ, η

))

dη
= −N (ln (−λ− η)− ln (−η))

+
Nη +

∑N

n=1 yn −Nλ−Nη

−λ− η

+
N∑

n=1

[
yn−1
∑

i=0

1

η + i

]

= −N (ln (−λ− η)− ln (−η))

+
Nη +

∑N

n=1 yn −N 1
N

(
∑N

n=1 yn

)

−Nη

−λ− η

+
N∑

n=1

[
yn−1
∑

i=0

1

η + i

]

= −N (ln (−λ− η)− ln (−η)) +
N∑

n=1

[
yn−1
∑

i=0

1

η + i

]

,

which has no closed-form solution when set to zero. The second derivative of the data

log-likelihood with respect to η can be written as:

d2 ln
(
P
(
{yn}Nn=1|λ, η

))

dη2
=

Nλ

η (η + λ)
−

N∑

n=1

[
yn−1
∑

i=0

1

(η + i)2

]

.
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Combining case 1 and case 2

By combining both cases, the first and second derivative of the Panjer distributing with

respect to η can be written in the form:

d ln
(
P
(
{yn}Nn=1|λ, η

))

dη
= −N (ln (sgn (η) (λ+ η))− ln (sgn (η) η)) +

N∑

n=1

[
yn−1
∑

i=0

1

η + i

]

,

d2 ln
(
P
(
{yn}Nn=1|λ, η

))

dη2
=

Nλ

η (η + λ)
−

N∑

n=1

[
yn−1
∑

i=0

1

(η + i)2

]

,

where sgn (·) is the sign function, such that:

sgn (x) =







−1 if x < 1

0 if x = 0

1 if x > 1

.

A.4 Inference

This section highlights the two different schemes of learning the parameters of the Pan-

jer mixture model. A D-dimensional generalisation of the Panjer PMF (from equation

(3.6)) is a product of D number of one-dimensional (univariate) Panjer distributions,

such that:

P (y|λ,η) =
D∏

d=1

P (yd|λd, ηd) ,

where y is someD-dimensional observation and {λ,η} areD-dimensional parameters;

note that yd ∈ N0, λd > 0 and ηd ∈ {[−∞,−λd) ∪ (0,∞]}. Then under aK component

D-dimensional Panjer mixture model, the probability of some D-dimensional observa-

tion yn and its respective latent variable zn (see Section 3.3.1) given all parameters is:

P (yn, zn|θ,π) =
K∏

k=1

(

πk

D∏

d=1

P (ynd|λkd, ηkd)

)znk

,
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where θ = {λk,ηk}Kk=1 contains all the parameters, and πk = P (znk = 1). Then after

N observations the complete data likelihood is:

P
(
{yn, zn}Nn=1|θ,π

)
=

N∏

n=1

K∏

k=1

(

πk

D∏

d=1

P (ynd|λkd, ηkd)

)znk

,

which has the log-likelihood:

LN =
N∑

n=1

K∑

k=1

znk

[

ln πk +
D∑

d=1

{

− ηkd ln
(

1 +
λkd

µkd

)

+ ynd ln (λkd)

− ln (ynd!) +
yn−1
∑

i=0

(

ln
(

ηkd + i

ηkd + λkd

))}
]

.

A.4.1 Expectation-maximisation

The first scheme to infer all the parameters is the expectation-maximisation (EM) algo-

rithm [45]. The first step is to take the expectation (E-step) of the latent parameters znk

with respect to the posterior distribution, this is evaluated as:

γ (znk) =
πkP (yn|λk,ηk)

∑K

j=1 πjP
(
yn|λj,ηj

) ,

which is done for all n = {1, . . . , N} and k = {1, . . . , K}. This is directly followed

by the second step which maximises (M-step) the complete data log-likelihood with

respect to the other parameters. A Lagrange multiplier is added onto the complete data

log-likelihood to ensure
∑

k πk. The M-step updates are:

πk =
1

N

N∑

n=1

γ (znk) ,

which is done for all k = {1, . . . , K}.

λkd = πk

N∑

n=1

γ (znk) ynd,
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which is done for all k = {1, . . . , K} and d = {1, . . . , D}. The parameter ηkd has no

closed-form solution (see Appendix A.3.2) and is therefore learned numerically using

the Newton-Raphson method initialised with:

η∗kd =
λ2
kd

∑N
n=1 γ(znk)(ynd−λkd)

2

∑N
n=1 γ(znk)−1

− λkd

,

which is motivated by the method of moments, this is done for all k = {1, . . . , N} and

d = {1, . . . , D}. This scheme iterative applies the E step followed by the M step till the

difference in the complete data log-likelihood is less than some pre-defined threshold.

A.4.2 Maximisation-maximisation

The second scheme to infer all the parameters is the maximisation-maximisation (MM)

algorithm. The first step is to maximise (M-step) the complete data log-likelihood with

respect to the latent parameters znk, this is done by first finding:

k = argmax (π1P (yn|λ1,η1) , . . . , πKP (yn|λK ,ηK)) ,

and then setting znk = 1 and zni = 0 for i ̸= k; this is done for all n = {1, . . . , N}. This

is directly followed by the second step which maximises (M-step) the complete data log-

likelihood with respect to the other parameters. A Lagrange multiplier is added onto

the complete data log-likelihood to ensure
∑

k πk = 1. The M-step updates are:

πk =
1

N

n∑

n=1

znk,

which is done for all k = 1, . . . , K .

λkd = πk

N∑

n=1

γ (znk) ynd,

which is done for all k = {1, . . . , K}, and d = {1, . . . , D}. The parameter ηkd has no

closed-form solution (see Appendix A.3.2) and is therefore learnt numerically using the
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Newton-Raphson method initialised with:

η∗kd =
λ2
kd

∑N
n=1 γ(znk)(ynd−λkd)

2

∑N
n=1 γ(znk)−1

− λkd

,

which is motivated by the method of moments, this is done for all k = {1, . . . , N} and

d = {1, . . . , D}. This scheme iterative applies the E-step followed by the M-step till the

difference in the complete data log-likelihood is less than some pre-defined threshold.
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Appendix B

Robustifying mixture models using

integral probability metric:

supplementary material

B.1 Inference

In this section, we propose an expectation-maximisation (EM) scheme to infer all the

parameters in the neighborhoodmixture model from Section 4. The parameters {cn}Nn=1

are replaced by latent variables {zn}Nn=1 indicate which mixture an observation was

sampled from, such that if znk = 1 then observation n was sampled from cluster k; this

is done for notational convenience.

The data likelihood of observing N observations is:

P
(
{yn, zn}Nn=1|{u(1)

m }Mm=1, . . . , {u(K)
m }Mm=1,π

)
=

N∏

n=1

K∏

k=1

(
πkP

(
yn|{u(k)

m }Mm=1

))znk ,

where P
(

yn|{u(k)
m }Mm=1

)

is defined in equation (4.5), the log of which gives the following

data log-likelihood:

LN =
N∑

n=1

K∑

k=1

znk
(
ln πk + ln

(
P
(
yn|{u(k)

m }Mm=1

)))
.

162



We then take the expectation (E-step) of the log-likelihood with respect to the latent

variables znk; this results in the following update:

γ (znk) =
πkP

(

yn|{u(k)
m }Mm=1

)

∑K

j=1 πjP
(

yn|{u(j)
m }Mm=1

) ,

which is done for all n = {1, . . . , N} and k = {1, . . . , K}. This is directly followed by

the third step which maximises (M-step) the complete data log-likelihood with respect

to the other parameters. A Lagrange multiplier is added onto the complete data log-

likelihood to ensure
∑K

k=1 πk, this results in the following update:

π̃k =
1

N

N∑

n=1

γ (znk) ,

which is done for all k = {1, . . . , K}. Then for each k = {1, . . . , K} the complete data

log-likelihood is maximised with respect to the ‘pseudo-points’, which has no closed

form update, therefore, for all m = {1, . . . ,M}, and k = {1, . . . , K} it is updated

iteratively using gradient decent:

ũ(k)
m =

ũ(k)
m − α

d

du(k)
m

(

λ

(

π̃k

M

M∑

i=1

k
(

u(k)
m , u(k)

i

)

− 2
N∑

n=1

γ (znk) k
(
u(k)
m , yn

)

))

,
(B.1)

where α > 0 is a step constant. If the kernel k (·, ·) is a Gaussian, then:

k (x, y) = exp
(

− 1

σ2
∥x− y∥

)

,

then equation (B.1) becomes:

ũ(k)
m = ũ(k)

m − α

(

λ

(

π̃k

M

M∑

i=1

k̃
(

u(k)
m , u(k)

i

)

− 2
N∑

n=1

γ (znk) k̃
(
u(k)
m , yn

)

))

,

where:

k̃ (x, y) = − 2

σ2
exp

(

− 1

σ2
∥x− y∥

)

× (x− y) .
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B.2 Results

In this section we present the results of all experiments from the data set presented in

Figure 4.2.

ζ value
ζ = 0.1 ζ = 0.5 ζ = 0.9

Train Data (EM) 85± 2 79± 1 76± 1
Train Data (Gibbs) 84± 3 75± 2 72± 1
Test Data (EM) 81± 1 68± 3 66± 2

Test Data (Gibbs) 81± 2 74± 3 73± 1

Table B.1: Performance of likelihood tempering Gaussian mixture models with different
ζ values on synthetic data set in Figure 4.2. Each model was trained on 80%
of the data set and tested on the remaining 20%. The average accuracy and
one standard deviation from 20 different experiments are reported.

B = 100 B = 1000
T = 100 T = 100 T = 100 T = 100

c = 1
Train Data (Gibbs) 73± 1 74± 2 80± 2 79± 2
Test Data (Gibbs) 72± 3 75± 2 76± 2 78± 1

c = 10
Train Data (Gibbs) 78± 1 80± 2 80± 1 82± 1
Test Data (Gibbs) 78± 3 79± 1 79± 2 80± 2

c = 100
Train Data (Gibbs) 71± 1 74± 1 75± 1 75± 3
Test Data (Gibbs) 71± 3 72± 2 74± 3 76± 3

Table B.2: Performance of likelihood posterior bootstrapping mixture models with dif-
ferent parameter values on synthetic data set from Figure 4.2. Each model
was trained on 80% of the data set and tested on the remaining 20%. The
average accuracy and one standard deviation from 20 different experiments
are reported.
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Appendix C

Piecewise linear dimensionality

reduction clustering supplementary

material

C.1 Latent variable PPCA relationship to PCA

In this section we demonstrate that the latent variable probablistic principal component

analysis model from Section 5.6 is indeed a generalisation of the ubiquitous PCA and

using small variance asymptotics [92]; this includes the infinite sparse PPCA and the

adaptive PPCA. Let us first start by marginalising out the discrete and continuous latent

variables {xn, zn} which are not of explicit interest in conventional PCA approach. To

compute the marginal likelihood of yn we compute the expectations: EP(xn,zn) [yn], and

EP(xn,zn)

[

(yn − E [yn]) (yn − E [yn])
T
]

, where we will use E [·] = EP(xn,zn) [·] for nota-

tional convenience. We express the moments of the marginal likelihood starting with
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the posterior mean of the marginal:

E [yn] = E [W (xn ⊙ zn) + µ+ ϵn]

= W (E [xn]⊙ E [zn]) + µ+ E [ϵn]

= W (0⊙ ρ) + µ+ 0

= µ,

where we have used a diagonal (K ×K) matrix ρ to denote the expectation of each

feature, which is determined by the prior on the matrix Z:

ρkk =







L
K

if multivariate hypergeometric prior

1
N

∑N

n=1 zkn if IBP prior
.

For the variance of the marginal, we can write:

E

[

(yn − E [yn]) (yn − E [yn])
T
]

= E

[

(W (xn ⊙ zn) + ϵn) (W (xn ⊙ zn) + ϵn)
T
]

= WρWT + σ2ID,

where ID is an identity matrix of size D. Finally, using the obtained expression for

E [yn] and E

[

(yn − E [yn]) (yn − E [yn])
T
]

, combined with the Gaussian likelihood of

yn resulting in a linear Gaussian model, we can write the marginal likelihood as:

P (yn |W,ρ, σ) =
1

(2π)
D
2

|C|−1/2 exp
(

−1

2
yTnC

−1yn

)

,

where we used C = WρWT + σ2ID to denote the model covariance.

Now, the marginal likelihood in this collapsed latent variable PPCA model is almost

identical to the PPCA model [184] with the key difference being the weights ρ which

can be scalar shared across each dimension or direction specific. In fact, we can say that

the PPCA model is a special case of the collapsed latent variable PPCA model when the

diagonal of ρ are full of ones, which occurs when the matrix Z is full of ones implying
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all observations are active in all K number of one-dimensional subspaces.

The complete data log-likelihood of the collapsed model is:

L =
N∑

n=1

ln (P (yn |W,ρ, σ))

= −N

2

(
D ln (2π) + ln |C|+ tr

(
C−1S

))

where tr (·) is a trace function, and S = 1
N
YYT . To find the maximum likelihood esti-

mates for W, we differentiate the likelihood and solve:

dL
dW

= −N

2

(
2C−1Wρ− 2C−1SC−1Wρ

)
= 0.

The maximum likelihood estimate for W then should satisfy:

C−1Wρ = C−1SC−1Wρ,

WMLρ = SC−1WMLρ.

To find the solution for the above we first express theWρ1/2 term using its singular

value decomposition:

Wρ1/2 = ULVT ,

which leads to:

C−1Wρ1/2 = UL
(
L2 + σ2IK

)−1 VT ,

then:

SC−1Wρ1/2 = Wρ1/2,

SUL
(
L2 + σ2IK

)−1 VT = ULVT ,

SUL = U
(
L2 + σ2IK

)
L,

which implies that uj is the eigenvector of S with eigenvalue of λj = σ2+ l2j . Therefore
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all potential solutions for WML may be written as:

WML =UK

(
KK − σ2IK

)1/2 Rρ−1/2,

where:

kjj =







λj eigenvalue of uj

σ2 otherwise
,

where R is (D ×K) orthonomal matrix. Theweighting term ρ allows to explicit control

over the scale of the different projection axis. ρ controls if we should place more or less

importance on the role of the input to the projection axis, which is meant to reflect our

posterior belief of re-scaling due to not all data points sharing all subspaces.

C.2 Learning W

In this section, we compare two different schemes of learning the projection matrix W

while maintaining orthogonality. We generate synthetic data Y ∈ R
D×N which takes

the form Y = W(X ⊙ Z) + E with X ∈ R
K×N a latent feature matrix with standard

Gaussian distribution; W ∈ R
D×K is a projection matrix with orthogonal columns;

E ∈ R
D×N is a noise matrix with multivariate Gaussian columns each with mean zero,

and without the loss of generality the covariance matrix σ2ID with σ = 0.1. The core

of the generative model remains the same across the different data sets we generate

(N = 1000,D = 35), and only the number of latent featuresK and the indicator matrix

Z, changes. We have considered five separate synthetic data sets and the distribution of

Z for each setup is displayed in Figure 5.2. We evaluate how three different schemes are

able to learn the projection matrix W; the first method is the same approach proposed

by [106] will sample each column of W using the von Misses-Fisher (vMF) distribution

(and then re-scale to maintain orthogonality), the second method will jointly sample all

the columns of W using a matrix vMF distribution, and the third method will jointly

optimises all columns of W on the Stiefel manifold using the Pymanopt toolbox [111].

For each method we solely focus on learning W, therefore other parameters are fixed
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Table C.1: Performance of two different schemes learning the projection matrix W on
five different datasets of dimension D = 35 and latent features K = 10 &
K = 20. For each experiment W was estimated using 80% of the data and
tested on the remaining 20%; average and 1SD of mean square prediction
error over 20 different experiments is reported.

Data Independent vMF [106] Matrix vMF Pymanopt

K = 10
0.323 0.221 0.095

Sparse ±0.016 ±0.012 ±0.002
matrix

K = 20
0.471 0.324 0.096
±0.013 ±0.009 ±0.002

K = 10
0.548 0.102 0.095

Dense ±0.026 ±0.020 ±0.001
matrix

K = 20
0.793 0.623 0.096
±0.017 ±0.025 ±0.001

Multivariate
K = 10

0.563 0.345 0.095
hypergeometric ±0.029 ±0.050 ±0.001

matrix
K = 20

0.760 0.498 0.096
±0.017 ±0.012 ±0.001

K = 10
0.566 0.127 0.093

Subsapce ±0.020 ±0.035 ±0.002
clustering

K = 20
0.769 0.125 0.096
±0.010 ±0.023 ±0.001

K = 10
0.614 0.452 0.093

Single ±0.011 ±0.010 ±0.001
State

K = 20
0.920 0.863 0.096
±0.015 ±0.008 ±0.003

to the true value. For each experiment W is estimated using 80% of the data and then

tested on the remaining 20%; results are reported in Table C.1.

Results from Table C.1 show that the projection matrix W estimated using the Py-

manopt toolbox has a lower mean squared prediction error when compared to estimat-

ing it with the other two methods.

C.3 Projection matrix update using Pymanopt

For both the isPPCA and aPPCA, the matrix W is updated numerically by minimising

the negative-log of equation (5.10) over the Stiefel manifold with respect to the matrix

W. Figure C.1 shows the implementation of this using the Pymanopt toolbox [111].
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Appendix D

Bayesian nonparametric extensions

supplementary material

D.1 Beta-binomial

Derivation of equation (6.1)

The the joint probability over zk = [z1k, ..., zNk]
T is:

P (zk|πk,m) P (πk|α) =
(

(m!)N
∏

n (m− znk)! (znk)!

)
( α

K

)

(1− πk)
Nm−nk (πk)

nk+
α
K
−1 ,

which when marginalised with respect to πk, is:

P (zk|α,m) =

(

(m!)N
∏

n (r − znk)! (znk)!

)
( α

K

)∫ 1

0

(1− πk)
Nm−mk (πk)

nk+
α
K
−1

dπk

=

(
N∏

n=1

(m!)

(m− znk)! (znk)!

)
( α

K

) Γ
(
nk +

α
K

)
Γ (Nm− nk + 1)

Γ
(
α
K
+Nm+ 1

) ,

Then the probability distribution over the matrix Z = [z1, ..., zK ] is:

P (Z|α,m) =
K∏

k=1

(
N∏

n=1

(m!)

(m− znk)! (znk)!

)
( α

K

) Γ
(
nk +

α
K

)
Γ (Nm− nk + 1)

Γ
(
α
K
+Nm+ 1

) ,

where nk =
∑N

n=1 znk
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Derivation of equation (6.2)

We assume there are K+ number of columns of Z where mk > 0, so we can split the

above up:

P ([Z] |α,m) =
K!

∏(m+1)N−1
h=0 Dh!

[
( α

K

) Γ
(
α
K

)
Γ (Nm+ 1)

Γ
(
α
K
+Nm+ 1

)

]K−K+

×
K+
∏

k=1

(
N∏

n=1

m!

(m− znk)! (znk)!

)
( α

K

) Γ
(
nk +

α
K

)
Γ (Nm− nk + 1)

Γ
(
α
K
+Nm+ 1

)

=
K!

∏(m+1)N−1
h=0 Kh!

[(
α
K

)
Γ
(
α
K

)
Γ (Nm+ 1)

Γ
(
α
K
+Nm+ 1

)

]K [

Γ
(
α
K
+Nm+ 1

)

(
α
K

)
Γ
(
α
K

)
Γ (Nm+ 1)

]K+

×
K+
∏

k=1

(
N∏

n=1

m!

(m− znk)! (znk)!

)
( α

K

) Γ
(
nk +

α
K

)
Γ (Nm− nk + 1)

Γ
(
α
K
+Nm+ 1

)

=
K!

∏(m+1)N−1
h=0 Kh!

[(
α
K

)
Γ
(
α
K

)
Γ (Nm+ 1)

Γ
(
α
K
+Nm+ 1

)

]K

×
K+
∏

k=1

(
N∏

n=1

(
m

znk

))

Γ
(
nk +

α
K

)
Γ (Nm− nk + 1)

Γ
(
α
K

)
Γ (Nm+ 1)

.

Let us observe the following:

xΓ (x)

Γ (N + 1 + x)
=

1
∏N

n=1 (j + x)
,

then:
α
K
Γ
(
nk +

α
K

)

α
K
Γ
(
α
K

) =
α

K

nk−1∏

n=1

(

j +
α

K

)

=
α

K

(

nk − 1 +
α

K

)

!,

Then from P ([Z] |α,m), we get:

K+
∏

k=1

(
N∏

n=1

(
m

znk

))

Γ
(
nk +

α
K

)
Γ (Nr − nk + 1)

Γ
(
α
K

)
Γ (Nr + 1)

,

which becomes:

K+
∏

k=1

(
N∏

n=1

(
m

znk

)) α
K

(
nk − 1 + α

K

)
Γ (Nr − nk + 1)

Γ (Nr + 1)
,
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and: [(
α
K

)
Γ
(
α
K

)
Γ (Nr + 1)

Γ
(
α
K
+Nr + 1

)

]

=

[

Γ (Nr + 1)
(
Nr + α

K

)
!

]

,

then:

P ([Z] |α,m) =
K!

K0!
∏(m+1)N−1

h=1 Kh

[

Γ (Nm+ 1)
(
Nm+ α

K

)
!

]K

×
( α

K

)K+ K+
∏

k=1

∏N

n=1

(
m

znk

) (
nk − 1 + α

K

)
Γ (Nm− nk + 1)

Γ (Nm+ 1)
.

Then as K →∞:

lim
K→∞

(
mk−1∏

j=1

(

j +
α

K

)
)

= (mk − 1)!,

lim
K→∞

(
K!

K0!KK+

)

= 1,

lim
K→∞





[

Nm!
∏Nm

j=1

(
j + α

K

)

]K


 = exp (−αHNm) ,

then:

lim
K→∞

(

K!

K0!
∏(m+1)N−1

h=1 Kh

[

Γ (Nm+ 1)
(
Nm+ α

K

)
!

]K
( α

K

)K+

×
K+
∏

k=1

∏N

n=1

(
m

znk

) (
nk − 1 + α

K

)
Γ (Nm− nk + 1)

Γ (Nm+ 1)

)

,

becomes:

αK+

∏(m+1)N−1
h=1 Kh

exp (−αHNm)
K+
∏

k=1

∏N

n=1

(
m

znk

)
(nk − 1)! (Nm− nk)!

(Nm)!
,

where HNm =
∑Nm

j=1
1
j
; also known as the (Nm)th harmonic number.
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D.2 Beta-negative-binomial

Derivation of equation (6.3)

The the joint probability over zk = [z1k, ..., zNk]
T is: The joint probability over zk =

[z1k, . . . , zNk]
T is:

P (zk|πk, r) P (πk|α) =
[

N∏

n=1

(
znk + r − 1

znk

)]( α

K

)

(1− πk)
Nr (πk)

nk+
α
D
−1 ,

where nk =
∑N

n=1 znk. Which when marginalised with respect to πk is:

P (zk|α, r) =
[

N∏

n=1

(
znk + r − 1

znk

)]( α

K

)∫ 1

0

(1− πk)
Nr (πk)

nk+
α
D
−1

dπk

=

[
N∏

n=1

(
znk + r − 1

znk

)]( α

K

) Γ
(
nk +

α
K

)
Γ (Nr + 1)

Γ
(
nk +

α
K
+Nr + 1

) ,

Then the probability distribution over the matrix Z = [z1, ..., zK ] is:

P (Z|α, r) =
D∏

d=1

[
N∏

n=1

(
znk + r − 1

znk

)]( α

K

) Γ
(
nk +

α
K

)
Γ (Nr + 1)

Γ
(
nk +

α
K
+Nr + 1

)

where nk =
∑N

n=1 znk

A.Farooq, PhD Thesis, Aston University 2022 174



Derivation of equation (6.4)

We assume there are K+ number of columns of Z where nk > 0, so we can split the

above up:

P ([Z] |α,m, r) =
K!

∏(m+1)N−1
h=0 Kh!

[(
α
K

)
Γ
(
nk +

α
K

)
Γ (Nr + 1)

Γ
(
nk +

α
K
+Nr + 1

)

]K−K+

×
K+
∏

k=1

[
N∏

n=1

(
znk + r − 1

znk

)] ( α
K

)
Γ
(
nk +

α
K

)
Γ (Nr + 1)

Γ
(
nk +

α
K
+Nr + 1

)

=
K!

∏(m+1)N−1
h=0 Kh!

[(
α
K

)
Γ
(
α
K

)
Γ (Nr + 1)

Γ
(
α
K
+Nr + 1

)

]K [

Γ
(
α
K
+Nr + 1

)

(
α
K

)
Γ
(
α
K

)
Γ (Nr + 1)

]K+

×
K+
∏

k=1

[
N∏

n=1

(
znk + r − 1

znk

)] ( α
K

)
Γ
(
nk +

α
K

)
Γ (Nr + 1)

Γ
(
nk +

α
K
+Nr + 1

)

=
K!

∏(m+1)N−1
h=0 Kh!

[(
α
K

)
Γ
(
α
K

)
Γ (Nr + 1)

Γ
(
α
K
+Nr + 1

)

]K

×
K+
∏

k=1

[
N∏

n=1

(
znk + r − 1

znk

)]

Γ
(
nk +

α
K

)
Γ
(
α
K
+Nr + 1

)

Γ
(
α
K

)
Γ
(
nk +

α
K
+Nr + 1

)

=
K!

∏(m+1)N−1
h=0 Kh!

[

Γ (Nr + 1)
(
Nr + α

K

)
!

]K
( α

K

)K+

×
K+
∏

k=1

[
N∏

n=1

(
znk + r − 1

znk

)] (
nk − 1 + α

K

)
!
(
α
K
+Nr

)
!

(
nk +

α
K
+Nr

)
!

,

then:

P ([Z] |α,m, r) =
K!

∏(m+1)N−1
h=0 Kh!

[

Γ (Nr + 1)
(
Nr + α

K

)
!

]K
( α

K

)K+

×
K+
∏

k=1

[
N∏

n=1

(
znk + r − 1

znk

)] (
nk − 1 + α

K

)
!
(
α
K
+Nr

)
!

(
nk +

α
K
+Nr

)
!

,

Then observe the following:

lim
K→∞

(
nk−1∏

j=1

(

j +
α

K

)
)

= (nk − 1)!,

lim
K→∞

(
K!

K0!KK+

)

= 1,
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lim
K→∞





[

Nr!
∏Nr

j=1

(
j + α

K

)

]K


 = exp (−αHNr) ,

then:

lim
K→∞

(

K!
∏(m+1)N−1

h=0 Kh!

[

Γ (Nr + 1)
(
Nr + α

K

)
!

]K
( α

K

)K+

K+
∏

k=1

[
N∏

n=1

(
znk + r − 1

znk

)] (
nk − 1 + α

K

)
!
(
α
K
+Nr

)
!

(
nk +

α
K
+Nr

)
!

)

,

is:
αK+

∏(m+1)N−1
h=1 Kh

exp (−αHNr)
K+
∏

k=1

(
∏N

n=1

(
znk+r−1

znk

))

(nk − 1)! (Nr)!

(nk +Nr)!
,

where HNr =
∑Nr

j=1
1
j
; also known as the (Nr)th harmonic number.
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