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Abstract: In this study, we aim to optimize and improve the efficiency of a Tetris-inspired
reconfigurable cleaning robot. Multi-criteria decision making (MCDM) is utilized as a powerful
tool to target this aim by introducing the best solution among others in terms of lower energy
consumption and greater area coverage. Regarding the Tetris-inspired structure, polyomino tiling
theory is utilized to generate tiling path-planning maps which are evaluated via MCDM to seek a
solution that can deliver the best balance between the two mentioned key issues; energy and area
coverage. In order to obtain a tiling area that better meets the requirements of polyomino tiling
theorems, first, the whole area is decomposed into five smaller sub-areas based on furniture layout.
Afterward, four tetromino tiling theorems are applied to each sub-area to give the tiling sets that
govern the robot navigation strategy in terms of shape-shifting tiles. Then, the area coverage and
energy consumption are calculated and eventually, these key values are considered as the decision
criteria in a MCDM process to select the best tiling set in each sub-area, and following the aggregation
of best tiling path-plannings, the robot navigation is oriented towards efficiency and improved
optimality. Also, for each sub-area, a preference order for the tiling sets is put forward. Based on
simulation results, the tiling theorem that can best serve all sub-areas turns out to be the same.
Moreover, a comparison between a fixed-morphology mechanism with the current approach further
advocates the proposed technique.

Keywords: self-reconfigurable robot; cleaning robot; Tetris-inspired; polyomino tiling theory;
coverage path planning; area decomposition; multi-criteria decision making

1. Introduction

Robots are deployed in a wide range of applications and are, therefore, rapidly becoming an
integral component of our everyday life. In particular, with several million units sold worldwide,
robots developed and implemented for floor cleaning tasks will become an elemental part of the
household in the near future. Such a massive market in robotic floor cleaning products involves
dominant market players such as IRobot, Dyson, Samsung, Xiaomi, and Neato. These robots can
autonomously navigate through a given area using onboard sensors and are typically characterized
by circular, square, and D-shaped morphologies. The suitability of current robots to assist in daily
domestic tasks is investigated in [1] from the human user viewpoint. Additionally, the study presented
in [2], analyses and models floor-cleaning coverage performances of some commercial domestic
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mobile robots. Moreover, not only in the commercial market but also in the academic literature, there
exist numerous cleaning robot studies within a wide spectrum from mechanical design to autonomy.
A Swedish wheeled mechanism for a floor cleaning robot was presented in [3] in order to attain efficient
locomotion in a populous area. In terms of robot autonomy, an innovative neural network approach is
presented in [4] which is utilized for path planning and obstacle avoidance for a cleaning robot in a
random environment. On the other hand, since numerous robotic floor cleaning products are available
in the marketplace, it is critical to have benchmark schemes to validate the robot’s cleaning performance
and coverage efficacy [5]. In addition, multi-robot schemes have been proved to be useful in cleaning
applications [6]. Although there are numerous studies that highlight the benefits of cleaning robots, the
efficiency of traditional cleaning robots is still affected by factors such as fixed morphology. Since such
a rigid structure highly limits the accessible spaces like room corners and narrow corridors, one viable
approach to overcome this restriction in a traditional cleaning system is to develop next-generation
robots with shape-shifting abilities to maximize the area coverage performance.

So far, in the field of reconfigurable robotics, three different architectures are introduced, namely,
intra-reconfiguration, inter-reconfiguration, and nested reconfiguration. Intra-reconfiguration deals
with a single robotic system that could change its morphology on its own without any external
supports [7]. Robots proposed under the inter-reconfigurable principle are basically modular robots
that can possess different morphologies by undergoing assembling and disassembling processes [8].
Modular robots can be investigated at higher levels to benefit from swarm intelligence. In this
regard, modular swarm robots are utilized to gain advantages on self-reconfigurability, self-replication,
and self-assembly [9]. On the other hand, nested reconfiguration can perform both inter and intra
reconfigurations. Hinged Tetro presented in [10], is an example of such nested reconfigurable robots.
Although numerous studies in the literature address reconfigurable robotics, they are primarily limited
to mechanism design and are hardly implemented to an area coverage task like floor cleaning. In order
to bridge this gap, in our previous work, we presented a novel reconfigurable floor cleaning robot
called hTetro [11,12]. This Tetris-inspired structure can change its morphology to any of the one-sided
Tetris pieces and as a result, could achieve superior coverage performance through its shapeshifting
ability. In addition, in a couple of our previous works, we utilized polyomino tiling theory to introduce
a coverage path planning technique for Tetris-inspired polyomino robots [13,14].

Polyomino tiling theory has been extensively studied in combinatorial mathematics as a distinct
branch of mathematics with Golomb as the pioneering inventor in this field. The applications of this
theory span a wide variety of fields including medicine [15], graphics, and gaming [16]. However,
polyomino tiling theory has rarely been applied to the field of robotics and, therefore, presents a scope
for tremendous research. As briefly mentioned above, in [13,14], a novel approach is introduced to
harness the polyomino tiling theory as a way of suggesting navigation strategies for reconfigurable
cleaning robots. These tiling theorems equip the reconfigurable robots with superlative navigation
abilities and make corners and narrow spaces more accessible. In pursuance of [14], this paper utilizes
the polyomino tiling theory to propose tiling sets as navigation strategies of the Tetris-inspired cleaning
robot in a static environment but goes a step further to definitively select the optimal tiling set for each
area under cleaning. This will suggest the navigation strategy that improves the overall efficiency from
the viewpoint of area and energy. This way, we will be entering the borders of optimal navigation for a
Tetris-inspired reconfigurable cleaning robot.

In our previous experiments on shape-shifting cleaning robots, we only considered area coverage
as a single parameter for assessing the robot’s performance, which is actually insufficient when the
robot is functioning in real-time scenarios [13,14]. Since the amount of energy consumption is also
a significant issue in any electromechanical system, the current paper aims at balancing a trade-off
between energy consumption and area coverage. Thus, in this study, we consider these two key factors
as decision criteria in a Multi-Criteria Decision Making (MCDM) process in order to choose the best
navigation strategy (defined by the tiling set) for achieving higher efficiency in terms of less energy
with superior area coverage.
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MCDM is a general term referring to all methods that help to make decisions based on preferences
where there is more than one conflicting criterion [17]. The reason why we apply MCDM is that
generally, real applications require the consideration of several possibly conflicting objectives to be
fulfilled, thus a multi-objective problem is required to be solved. On the other hand, usually a trade-off
between the objectives exists and we rarely have an alternative that can best satisfy all the objectives
simultaneously. Accordingly, the intelligent agent must efficiently balance the facing trade-off.

Despite the fact that MCDM methods may be widely diverse, many of them share certain aspects
in common [18], such as the concepts of alternatives, criteria, and the weights of importance.

• Alternatives represent the different choices available to the decision maker. Usually, the set of
alternatives is assumed to be finite.

• Criteria represent the different factors on the basis of which the alternatives can be investigated.
• Importance factors (weights of importance) are considered as a measure of the significance of each

criterion in the decision-making process. Usually, these weights are normalized to add up to one.
It is also assumed that the decision maker has determined the weights of the decision criteria
based on relative significance.

If the number of alternatives is infinite, then we will face a multi-objective optimization (MOO).
Here, since we have a finite set of tiling sets proposed based on the tiling theorems, we are supposed
to solve a MCDM regarding the area coverage and energy as the decision-making criteria. Moreover,
there are many ways to classify MCDM methods:

• Classification based on the data type: deterministic, stochastic, or fuzzy MCDM methods [19].
However, some situations require combinations of all the above [20].

• Classification based on the number of decision makers: Single vs. group MCDM [21].
• Classification based on the approach applied on the data: The WSM (Weighted Sum Model)

or SAW (Simple Additive Weighting), WPM (Weighted Product Model), AHP (Analytic
Hierarchy Process), revised AHP, ANP (Analytic Network Process), TOPSIS (Technique for Order
Preference by Similarity to Ideal Solution), ELECTRE (Elimination and Choice Translating Reality),
PROMETHEE (Preference Ranking Organization Method for Enrichment Evaluations); VIKOR
(VlseKriterijumska Optimizacija I Kompromisno Resenje), and LINMAP (Linear Programming
for Multidimensional Analysis of Preference) are the methods which are of more use in
practice [17,18,22].

In addition, MCDM plays a significant role in many intelligent systems and is widely utilized
in many fields such as operation research and soft computing [21,23]. Moreover, regarding the links
between MCDM and robotics, it is mostly utilized for the allocation of resources and task scheduling
in robotic swarms [24], robot selection in automated industry operations [25], and defining exploration
strategies for search and rescue robots [26]. Similarly, in this paper, MCDM will be applied to
choose between navigation strategies defined by given tiling sets. Here, we will be focused on single
decision-making deterministic MCDM applying concepts of the SAW (Simple Additive Weighting)
method [22].

In summary, all aspects of this research are quite novel. In better words, all aspects of it
have recently emerged: The mechanical design of the Tetris-inspired cleaning robot is proposed
in 2017 [11,12] and the path-planning idea is raised in 2018 in terms of a tiling theory approach [13,14].
However, the previously raised tiling-path planning approach only considers area coverage as a
single performance metric with absolutely no consideration of energy consumption issues. The main
contributions of this study in comparison to our previous works are as follows:

• In this study, energy consumption is considered as a second significant performance metric in
tiling path planning.

• This paper proposes an energy estimation scheme for the novel self-reconfigurable
robotic platform.



Appl. Sci. 2019, 9, 63 4 of 22

• The current work suggests the optimal path-planning approach by means of MCDM, i.e., creating
an optimal balance between maximum area coverage and minimum energy. In other words,
however the tiling-theoretic path planning approach is introduced in [13,14], this paper goes
beyond previous works to some degree by taking into account the energy factor and aims at
adding some optimality utilizing MCDM.

• In addition, in this study, a more recent tiling theorem has been utilized that is not investigated
in previous studies [13,14] and surprisingly, based on simulation results, this specific theorem
(here illustrated as Theorem 1 [27]) turns out to be the most-promising tiling theorem that can
best serve all the areas targeted for optimal cleaning.

On the whole, tiling-path-planning is a novel concept only related to the novel hTetro, and it is our
belief that expanding a novel idea (by considering more parameters) and adding optimality to a novel
concept is invaluable.

The rest of the paper is organized as follows. Section 2 introduces the experimental environment
and explains the utilized Tetris-inspired robot structure. Section 3 casts light on the concepts of
Polyomino Tiling Theory applied to our robotic platform and elaborates the four utilized tiling
theorems. Moreover, this section is also concerned with the reason (and also technique) for the
area decomposition process and finally presents five distinguished tiling sets under each theorem
applied on each sub-area. Section 4 is concerned with explaining the method of extracting the data
for energy and area coverage as the two decision criteria. Section 5 clarifies the general concepts
of a MCDM method called Simple Additive Weighing (SAW) and then applies concepts of this
method on the tiling-based path planning for the robot by means of defining a special fitness function.
Finally, Section 6 is dedicated to a thorough analysis of the results in terms of fitness function values.
In addition, a preference order for different theorems applied to different sub-areas is presented along
with the best possible combination of tiling sets for the whole area. Section 7 presents an evaluation of
the robot performance with and without the tiling. Consequently, Section 8 concludes the results and
suggests possible works in the future.

2. An Overview of the Experimental Environment

An image of the experimental environment can be seen in Figure 1 which includes the hTetro robot
and five obstacles. The outline of hTetro robot is shown in Figure 2, where all the four square-blocks
are linked together with hinges. These blocks are driven by actuating the hinges with the smart servo
motors mounted on it. The dimension of each hTetro block has a length, width, and height of 140 mm,
140 mm, and 55 mm, respectively. Owing to the smaller and compact design structure of hTetro, each
box is assigned to perform a specific function: Block 1 manages the locomotion of the robot, while
control and power modules are located on block 2. Meanwhile, all the blocks are equipped with
cleaning functions, but while the robot is performing reconfigurations, the cleaning function is turned
off in order to devote the actuation energy fully to the servo motors controlling hinges. The aggregate
weight of hTetro, including all its peripheral devices is approximately 3 kg. For the mobility and
transformation, hTetro is equipped with a set of six geared DC motors and three actuator servo motors,
respectively. The three actuated servo motors, placed at hinges, are controlled to switch the robot
between the seven possible configurations illustrated in Figure 3. For the actuation of hinge points
during reconfiguration, Herkulex DRS-0101-7 V smart servos are utilized with a maximum rotation
angle of 270◦. The microcontroller used in hTetro is an Arduino Atmega 2560 16-Bit which performs
three major functions:

• Receiving the command from the user by means of a smartphone which is connected
wirelessly through a Bluetooth serial communication protocol. Arduino uses UART (Universal
Asynchronous Receiver-Transmitter) for this communication.
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• Generating control signals to the motor driver which controls multiple DC motors; in addition,
using PWM (Pulse Width Modulation), it controls the speed of the motor by providing the
required current for the motor to run.

• Establishing full duplex serial communication with the servomotors where Arduino sends the
control signals to the servo motors and simultaneously receives feedback from them.

For a thorough explanation of the mechanical design of hTetro and a detailed report on the content
and functionality of each block, the reader is referred to [11,12]. The detailed system architecture of
electrical conventions is given in Figure 4.
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3. Polyomino Tiling Theory Applied to Our Robotic Platform

Polyominoes are two-dimensional geometric figures that have equal sized constituent squares
joined to each other by the edges [28]. They are also defined as n-ominoes, depending upon the number
of squares that form the polyomino. The robotic platform used in this paper is hTetro that resembles
a tetromino, i.e., a polyomino with four squares. As mentioned earlier, each of these hTetro square
blocks moves about a hinge connection making it capable of reconfiguring into all seven one-sided
shapes of a tetromino, as illustrated in Figure 3.

Polyomino tiling theory recommends mathematical theorems that allow for complete tiling with
polyomino tiles without any overlap, via translations, rotations, and reflections, of tiles in the regions
that fall within the constraints of the theorem. If these regions strictly adhere to the conditions of
the theorems, tiling sets would not produce any gaps and should result in complete (exact) area
coverage [28]. As with [13,14], in this paper, polyomino tiling theory is utilized to define the navigation
strategies for reconfigurable floor-cleaning robots. To this end, initially, the entire space under cleaning
is visualized as a large grid divided into congruent squares with dimensions that match the dimensions
of robot blocks. These theorems can provide multiple tiling sets depending upon the dimensions of
the region, obstacles contained, and the shapes permitted to be utilized in the theorem. Eventually, by
reconfiguring from one shape to another, hTetro follows these tiling sets as a map for its navigation.

3.1. Elaborating on the Applied Tiling Theorems

The theorems enlisted below are applied to the experimental environment regarding the physical
characteristics of hTetro cleaning robot. With the aim of applying the results to the experimental
environment, only the concepts of the theorems are illustrated in this work. For further illustration on
the proofs, the reader is referred to the references mentioned alongside each theorem statement.

In addition, before delving into theorem concepts, it should be mentioned that each theorem
employs specific shapes of tetrominoes. Moreover, it should be clarified that, if the space is regarded
as a grid divided into congruent square cells:
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- A modified rectangle is simply an a × b rectangle with both the upper-left and lower-right corner
cells removed [29].

- A deficient rectangle means a rectangle in which some of its square cells are ignored or occupied
by obstacles [30].

Theorem 1. A deficient square of area 3N × 3N, with one square removed, can be tiled by set A [27] where Set
A includes tiles O, T, and J, as illustrated in Figure 3.

Theorem 2. A conventional rectangle a × b can be tiled by the set B if, and only if, either of the following is
true [29] where Set B includes tiles Z, S, and T, as illustrated in Figure 3.

1. One side is divisible by 4,
2. a, b ≡ 2 (mod 4) and a + b > 16.

Theorem 3. A modified rectangle a× b can be tiled by the set C, if and only if, either of the following is true [29]
where Set C includes tiles Z, S, and T, as illustrated in Figure 3.

1. a ≡ 2 (mod 4) and b is odd,
2. b = 2 and a ≡ 1 (mod 4)

Theorem 4. A deficient rectangle a × b can be tiled by set D, if and only if [30]:

1. a and b are odd and the rectangle is sized (2n + 1) × (2n + 1) when n ≥ 1, and,
2. The missing cell in the deficient rectangle will have

• odd coordinates if the rectangle is sized (4m + 1) × (4m + 1) when m ≥ 1, or
• even coordinates if the rectangle is sized (4m + 3) × (4m + 3) with m ≥ 1.

where Set D includes O, L, and J tiles, as illustrated in Figure 3.

Furthermore, it should be mentioned that in order to reach a complete and exact tiling,
the dimensions of the entire area must exactly follow the statement of the theorem and if they do
not, a smaller rectangle inside the entire area could be considered that better fits the statement of the
theorem. Also, in order to follow the requirements of the theorem, the entire area can be split into
several smaller rectangles in a process called area decomposition.

3.2. Area Decomposition Based on Furniture Layout

As mentioned before, reconfigurability allows the robot to navigate around and under obstacles
with different shapes. This results in accessing narrow spaces and inaccessible corners. However,
this is possible while adhering to a tiling map as the navigation strategy; therefore, we can utilize the
polyomino tiling theory. In order to apply these theorems perfectly for full area coverage, any space
must satisfy the conditions of the theorem accurately, which is an unrealistic claim. That is why in this
study, the entire area is manually decomposed into five sub-areas such that each sub-area will better
satisfy the conditions of a theorem.

This decomposition depends on the position of each obstacle (furniture layout). In ideal
circumstances, the robot must autonomously detect the presence, shape, and accessibility of the
obstacles and tiny or unusual corners that require more attention. This experimental aspect is
currently under investigation applying SLAM (Synchronous Localization And Mapping) and sensor
fusion techniques. Consequently, depending upon the theorems in the robot’s database, it will
accordingly decompose the entire floor space into sub-areas for optimal area coverage. However,
such decompositions do not always guarantee a perfect coverage of the sub-areas, resulting in untiled
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zones. That is why, optimizing the area decomposition based on furniture layout would serve as a
future scope for this paper. Furthermore, the area decomposition will help to reduce the on-board
computational cost working in each individual area with a restricted number of cells to be covered,
which is the second reason supporting an area decomposition approach.

In this paper, the positions of randomly-placed obstacles are considered to manually divide
the entire space into five sub-areas, as depicted in Figure 5. Notice that, in Figure 5, the sub-areas
are numbered, and the yellow sections represent the obstacles. The floor space chosen for this
paper is an area of 11.54 m2, such that the entire area can be covered exactly by 598 square cells.
In correlation with the numbering on Figure 5, the respective areas of these distinct sub-areas are
2.058 m2, 0.7056 m2, 3.3124 m2, 3.3124 m2, and 2.156 m2 without subtracting the area occupied by
obstacles. After subtracting the obstacle-occupied area, the entire area to be cleaned is 10.5448 m2

which is the sum of 1.8228 m2, 0.7056 m2, 3.0184 m2, 2.9988 m2, and 1.9992 m2 respectively for each
numbered sub-area.

The general approach is to apply all four previously introduced theorems reasonably in each
sub-area and propose consequent tiling sets that cover each sub-area. Finally, the resulting tiling sets
will be analyzed in a Multi-Criteria Decision Making (MCDM) framework to test the effectiveness of
these tiling theorems. Based on the MCDM results, the most efficient theorem for each sub-area is
introduced that can result in a better balance between energy and area coverage.
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3.3. The Resulting Tiling Sets (Navigation Strategies)

Finally, all the aforementioned theorems are applied in each sub-area to generate five tiling sets
which are indeed the robot’s navigation strategies.

The proposed tiling sets are summarized in Figure 6, in which yellow rectangles represent
obstacles and pink areas represent untiled zones. Each column of Figure 6 contains the results of
applying a specific theorem on the whole area, and each row (under each column) represents a sample
tiling solution (TS), applying the theorem mentioned in the header. Having four theorems with five
tiling samples for each, we will have 20 tiling solutions for the whole area (100 tiling solutions to
analyze for all sub-areas). In order to make it highly descriptive, the coloring of each sub-area in
Figure 6 goes with Figure 5.

Due to the conditions imposed by each theorem, if the area in question does not perfectly match
the conditions, the tiling set does not tile the entire area, resulting in distinct untiled zones within
each sub-area. Realistically, the area covered by the tiled zones (tiled area) as shown in Figure 6
differs from the actual area spanned by the robot even when it is strictly following the tiling set for
navigation. This is because, every time the robot reconfigures from one shape to another, some area
may be traversed that is not tiled and does not exist in the tiling set (fake coverage), or some area will
be traversed more than once during the reconfiguration process (re-coverage). However, as mentioned
previously, the cleaning function of the robot is switched off while performing reconfigurations in
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order to devote the actuation energy fully to the servo motors controlling the hinges. This way, any
unnecessary area that is not traversed for cleaning is disregarded.
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4. Extracting the Data for Area Coverage and Energy

The aim is to use the amounts of area coverage and energy consumption as decision criteria in a
multi-criteria decision-making (MCDM) process.

On one hand, since all the blocks of hTetro are equipped with cleaning functions, tiling sets, as
depicted in Figure 6, will represent area coverage values.

On the other hand, since the effect of time is not considered as a decision-criteria in this study, the
consumed energy can be reported in terms of the consumed current [31,32]. Moreover, the consumed
current by the robot can be estimated using a current estimation algorithm developed based on
Newton–Raphson’s algorithm [33,34] which is illustrated by the pseudo code in Figure 7.

In each sub-area, the starting point of the reconfigurable robot is set as a fixed position for all the
tiling patterns to avoid the difference in the starting voltage and current. When the robot begins to
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Figure 7. Pseudo code for the energy estimation scheme.

Using the pre-defined tiling set, given in Figure 6, the robot’s energy consumption is calculated for
individual gaits, while the amount of energy consumed by all the motors for a single-step movement
containing all types of locomotion, shapeshifting, and angular movements, overall, is called the gait
pattern [33]. Supported by the experimental results, and considering only gait patterns as input, the
motor torque, no-load speed, current, and the rated DC voltages are obtained by allowing the robot
to traverse within the given tiling set. In the experiments, the output voltage amplitude is taken as
the same as the offset value of the DC motor and the duty cycle, while applying the PWM technique,
is calculated for the full 12 V DC supply. The total current ratio is set as 7.4 A before starting the
area coverage.

Generally, based on the Newton–Raphson algorithm, we developed an energy estimation scheme
that characterizes the energy cost in terms of the current consumed with respect to specific locomotion
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gaits across all valid morphologies. This approach was adopted in our work to compute the current
consumed by our hTetro robot for covering a given area.

Tables 1–5 summarize the area coverage and energy values (in both percentages and real values)
for each sub-area applying different tiling sets given by the introduced theorems. In addition, it should
be mentioned that the obs-free in the Tables 1–5 stand for the area which is the result of subtracting the
area occupied by obstacles from the entire sub-area.

Table 1. Data for area coverage and energy for sub-area 1.

Area Coverage Energy

Area % Real Value (m2) Energy % Real Value (A)

Sub-Area 1
2.058 m2

1.8228 m2

(obs-free)

Theorem 1

Tiling set 1 90.322 1.6464 16.11 1.192
Tiling set 2 94.623 1.7248 15.09 1.117
Tiling set 3 86.021 1.568 14.90 1.103
Tiling set 4 90.322 1.6464 15.92 1.178
Tiling set 5 94.623 1.7248 15.01 1.111

Theorem 2

Tiling set 1 68.817 1.2544 15.60 1.419
Tiling set 2 68.817 1.2544 16.78 1.423
Tiling set 3 64.52 1.2548 14.31 1.431
Tiling set 4 68.817 1.2544 16.30 1.428
Tiling set 5 60.215 1.0926 15.76 1.428

Theorem 3

Tiling set 1 77.419 1.4112 16.29 1.442
Tiling set 2 86.02 1.568 16.01 1.433
Tiling set 3 86.021 1.568 15.37 1.440
Tiling set 4 86.021 1.568 14.98 1.466
Tiling set 5 73.118 1.3328 15.24 1.441

Theorem 4

Tiling set 1 73.118 1.3328 15.75 1.449
Tiling set 2 88.172 1.6072 14.23 1.440
Tiling set 3 86.021 1.568 14.76 1.480
Tiling set 4 86.021 1.568 15.90 1.466
Tiling set 5 90.32 1.6464 15.12 1.473

Table 2. Data for area coverage and energy for sub-area 2.

Area Coverage Energy

Area % Real Value (m2) Energy % Real Value (A)

Sub-Area 2
0.7056 m2

No Obstacle

Theorem 1

Tiling set 1 88.888 0.6266 11.98 0.866
Tiling set 2 88.888 0.6266 12.55 0.929
Tiling set 3 88.888 0.6266 12.21 0.903
Tiling set 4 88.888 0.6266 12.02 0.889
Tiling set 5 100 0.7056 11.45 0.847

Theorem 2

Tiling set 1 88.888 0.6266 12.91 1.101
Tiling set 2 77.777 0.5488 12.11 1.126
Tiling set 3 88.888 0.6266 11.52 0.998
Tiling set 4 77.777 0.5488 12.10 1.012
Tiling set 5 66.666 0.4704 11.00 1.110

Theorem 3

Tiling set 1 55.555 0.3914 11.78 0.989
Tiling set 2 55.555 0.3914 12.41 0.961
Tiling set 3 66.666 0.4704 11.56 1.003
Tiling set 4 66.666 0.4704 12.30 1.120
Tiling set 5 55.555 0.3914 12.23 0.890

Theorem 4

Tiling set 1 88.888 0.6266 12.90 0.994
Tiling set 2 88.888 0.6266 11.89 1.102
Tiling set 3 88.888 0.6266 12.32 1.119
Tiling set 4 88.888 0.6266 12.12 1.103
Tiling set 5 88.888 0.6266 11.95 0.988
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Table 3. Data for area coverage and energy for sub-area 3.

Area Coverage Energy

Area % Real Value (m2) Energy % Real Value (A)

Sub-Area 3
3.3124 m2

3.0184 m2

(obs-free)

Theorem 1

Tiling set 1 82.825 2.8224 19.81 1.466
Tiling set 2 83.116 2.5088 19.06 1.410
Tiling set 3 90.909 2.744 19.59 1.449
Tiling set 4 83.116 2.5088 18.36 1.358
Tiling set 5 93.506 2.8224 19.48 1.442

Theorem 2

Tiling set 1 77.92 2.352 18.43 1.710
Tiling set 2 80.519 2.4304 17.78 1.702
Tiling set 3 70.12 2.1168 18.01 1.691
Tiling set 4 72.227 2.1952 17.44 1.699
Tiling set 5 75.32 2.2736 18.07 1.710

Theorem 3

Tiling set 1 81.8181 2.4696 19.91 1.701
Tiling set 2 83.116 2.5088 18.21 1.699
Tiling set 3 85.714 2.5872 19.35 1.701
Tiling set 4 83.116 2.5088 19.71 1.717
Tiling set 5 77.922 2.352 19.22 1.729

Theorem 4

Tiling set 1 75.32 2.2736 17.41 1.711
Tiling set 2 80.519 2.4304 19.09 1.737
Tiling set 3 80.519 2.4304 19.45 1.712
Tiling set 4 80.519 2.4304 19.32 1.724
Tiling set 5 80.519 2.4304 19.88 1.718

Table 4. Data for area coverage and energy for sub-area 4.

Area Coverage Energy

Area % Real Value (m2) Energy % Real Value (A)

Sub-Area 4
3.3124 m2

2.9988 m2

(obs-free)

Theorem 1

Tiling set 1 91.503 2.744 18.23 1.349
Tiling set 2 94.117 2.8224 16.79 1.242
Tiling set 3 86.2745 2.5872 17.10 1.265
Tiling set 4 91.503 2.744 17.39 1.287
Tiling set 5 96.732 2.9008 16.58 1.227

Theorem 2

Tiling set 1 77.124 2.3128 16.89 1.779
Tiling set 2 80.392 2.4108 17.66 1.767
Tiling set 3 73.202 2.1952 15.16 1.795
Tiling set 4 84.313 2.5284 16.78 1.801
Tiling set 5 81.045 2.4304 17.09 1.780

Theorem 3

Tiling set 1 81.04 2.4304 16.51 1.771
Tiling set 2 83.66 2.5088 16.66 1.770
Tiling set 3 86.274 2.5872 17.71 1.799
Tiling set 4 75.816 2.2736 15.39 1.787
Tiling set 5 78.431 2.352 17.41 1.770

Theorem 4

Tiling set 1 73.202 2.1952 15.89 1.799
Tiling set 2 83.66 2.5088 17.55 1.769
Tiling set 3 83.66 2.5088 16.70 1.767
Tiling set 4 81.045 2.4304 17.45 1.775
Tiling set 5 83.66 2.5088 16.10 1.778
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Table 5. Data for area coverage and energy for sub-area 5.

Area Coverage Energy

Area % Real Value (m2) Energy % Real Value (A)

Sub-Area 5
2.156 m2

1.9992 m2

(obs-free)

Theorem 1

Tiling set 1 98.039 1.96 18.30 1.354
Tiling set 2 94.117 1.8816 18.68 1.382
Tiling set 3 90.196 1.8032 19.46 1.440
Tiling set 4 94.117 1.8816 20.04 1.483
Tiling set 5 94.117 1.8816 19.23 1.4237

Theorem 2

Tiling set 1 81.372 1.6268 19.09 1.489
Tiling set 2 86.27 1.7248 20.31 1.491
Tiling set 3 82.352 1.6364 20.80 1.511
Tiling set 4 82.352 1.6464 18.31 1.534
Tiling set 5 86.28 1.7248 21.03 1.487

Theorem 3

Tiling set 1 90.19 1.8032 20.53 1.512
Tiling set 2 94.117 1.8816 19.41 1.490
Tiling set 3 90.196 1.8032 19.05 1.506
Tiling set 4 86.27 1.7248 19.69 1.493
Tiling set 5 86.28 1.7248 21.10 1.510

Theorem 4

Tiling set 1 78.43 1.568 17.26 1.497
Tiling set 2 78.43 1.568 17.87 1.487
Tiling set 3 86.274 1.7248 20.33 1.503
Tiling set 4 78.431 1.568 17.65 1.480
Tiling set 5 82.352 1.6464 19.77 1.501

5. Multi-Criteria Decision Making

5.1. Simple Additive Weighing (SAW) Method—A Very Brief Review

Owing to its simplicity, the SAW method is probably the most popular and most commonly used
method for multiple-criteria decision making (MCDM), especially in single-dimensional problems. If
there are M alternatives and N criteria then, the best alternative is the one that satisfies Equation (1).

A∗ = {Ai|max
i

N

∑
j=1

wjrij
}

i = 1, 2, . . . , M (1)

where, N is the number of decision criteria, rij is the normalized value of the i-th alternative in terms of
the j-th criterion, and wj is the weight of importance of the j-th criterion. The values are normalized in
order to make it possible to add the measurements with different units.

5.2. SAW Concepts Applied to Tiling-Based Path Planning

The energy consumption level is a key factor of any electromechanical system, and for cleaning
applications, the amount of area coverage signifies another aspect of the performance. Here, we
want to apply MCDM regarding these key factors (area and energy) as the decision-making criteria.
As mentioned above, an area decomposition is defined based on the obstacle layout and the whole
environment is divided into five sub-areas, as shown in Figure 5. Then, the four introduced tiling
theorems are applied to each sub-area and five tiling sets are devised for each theorem in each sub-area.
Regarding the given tiling sets for each sub-area, the results for the decision criteria are summarized
within Tables 1–5. The final aim is to introduce a superior theorem for each sub-area; the theorem
which could best tile the area in terms of area coverage and energy consumption. In order to do this,
a fitness function for each given tiling set is described, as in Equation (2), in which c1 is a positive
weighting factor and c2 is a negative weighting factor since we would like to increase the area coverage
and decrease the energy utilization and create a balance between the two. For now, we assume that
the area coverage and energy are of the same importance for the user and assume the importance
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weights c1 and c2 are equally 0.5. In order to make the concepts of area and energy commensurable
and make the addition possible, first we must normalize the values or we can simply use the values in
percentage, which is representative of the real value regardless of units.

f (s) = c1 A(s)− c2E(s) (2)

6. Result Analysis and Discussion

In order to apply the proposed approach, Tables 1–5 are considered as the input data. For each
sub-area, we have 20 given tiling sets, i.e., 20 alternatives: Four theorems that each give five tiling sets.
In each sub-area, the value of the fitness function for each of the alternatives is calculated through (2),
and consequently, making a comparison amongst the fitness values gives the best tiling set for each
sub-area. In addition, not only a preference order between the individual tiling sets is suggested, but
also a theorem that can better handle the environment is introduced based on sum of rankings for the
tiling sets. Tables 6–10 summarize the ranking of the tiling sets based on the fitness function.

Consequently, based on the sum of rankings summarized in Tables 6–10, the preference order of
the Theorems for each sub-area is given by the following (the option with the least sum of rankings
appears to be the best).

• For sub-area 1: Theorem 1 > Theorem 4 > Theorem 3 > Theorem 2
• For sub-area 2: Theorem 1 > Theorem 4 > Theorem 2 > Theorem 3
• For sub-area 3: Theorem 1 > Theorem 3 > Theorem 4 > Theorem 2
• For sub-area 4: Theorem 1 > Theorem 3 > Theorem 4 > Theorem 2
• For sub-area 5: Theorem 1 > Theorem 3 > Theorem 2 > Theorem 4

Table 6. Ranking of the tiling sets based on the fitness value for sub-area 1.

Sub-Area 1 Rank Rank Sum

Theorem 1

Tiling set 1 5

20
Tiling set 2 2
Tiling set 3 8
Tiling set 4 4
Tiling set 5 1

Theorem 2

Tiling set 1 16

90
Tiling set 2 18
Tiling set 3 19
Tiling set 4 17
Tiling set 5 20

Theorem 3

Tiling set 1 13

58
Tiling set 2 12
Tiling set 3 10
Tiling set 4 9
Tiling set 5 14

Theorem 4

Tiling set 1 15

42
Tiling set 2 6
Tiling set 3 7
Tiling set 4 11
Tiling set 5 3
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Table 7. Ranking of the tiling sets based on the fitness value for sub-area 2.

Sub-Area 2 Rank Rank Sum

Theorem 1

Tiling set 1 5

30
Tiling set 2 10
Tiling set 3 8
Tiling set 4 6
Tiling set 5 1

Theorem 2

Tiling set 1 12

56
Tiling set 2 14
Tiling set 3 2
Tiling set 4 13
Tiling set 5 15

Theorem 3

Tiling set 1 18

90
Tiling set 2 20
Tiling set 3 16
Tiling set 4 17
Tiling set 5 19

Theorem 4

Tiling set 1 11

34
Tiling set 2 3
Tiling set 3 9
Tiling set 4 7
Tiling set 5 4

Table 8. Ranking of the tiling sets based on the fitness value for sub-area 3.

Sub-Area 3 Rank Rank Sum

Theorem 1

Tiling set 1 8

22
Tiling set 2 6
Tiling set 3 2
Tiling set 4 5
Tiling set 5 1

Theorem 2

Tiling set 1 15

81
Tiling set 2 9
Tiling set 3 20
Tiling set 4 19
Tiling set 5 18

Theorem 3

Tiling set 1 10

40
Tiling set 2 4
Tiling set 3 3
Tiling set 4 7
Tiling set 5 16

Theorem 4

Tiling set 1 17

67
Tiling set 2 11
Tiling set 3 13
Tiling set 4 12
Tiling set 5 14
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Table 9. Ranking of the tiling sets based on the fitness value for sub-area 4.

Sub-Area 4 Rank Rank Sum

Theorem 1

Tiling set 1 4

15
Tiling set 2 2
Tiling set 3 5
Tiling set 4 3
Tiling set 5 1

Theorem 2

Tiling set 1 18

73
Tiling set 2 15
Tiling set 3 19
Tiling set 4 8
Tiling set 5 13

Theorem 3

Tiling set 1 12

60
Tiling set 2 9
Tiling set 3 6
Tiling set 4 17
Tiling set 5 16

Theorem 4

Tiling set 1 20

62
Tiling set 2 11
Tiling set 3 10
Tiling set 4 14
Tiling set 5 7

Table 10. Ranking of the tiling sets based on the fitness value for sub-area 5.

Sub-Area 5 Rank Rank Sum

Theorem 1

Tiling set 1 1

18
Tiling set 2 2
Tiling set 3 7
Tiling set 4 5
Tiling set 5 3

Theorem 2

Tiling set 1 16

69
Tiling set 2 10
Tiling set 3 17
Tiling set 4 14
Tiling set 5 12

Theorem 3

Tiling set 1 8

40
Tiling set 2 4
Tiling set 3 6
Tiling set 4 9
Tiling set 5 13

Theorem 4

Tiling set 1 18

83
Tiling set 2 20
Tiling set 3 11
Tiling set 4 19
Tiling set 5 15

On the other hand, a graphical analysis of the results is illustrated in Figures 8–12 in which
the different tiling sets given by different tiling theorems are depicted based on the ranking of their
corresponding fitness function. In the given bar graphs, for each sub-area, the results given by Theorem
1, Theorem 2, Theorem 3, and Theorem 4 are shown in red, green, blue and yellow bars, respectively.
Meanwhile, regarding the vertical axis, there is a labeling applied to the real fitness values to increase
the visibility for comparison: The first ranking tiling set (with highest fitness function) is given the
value 20 and the last ranking one (with lowest fitness function) is given the value of 1. Moreover, in the
horizontal axis, the expressions Th i-Ts j stands for Theorem i-Tiling set j. It is clear that Figures 8–12
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introduce a precise preference order between each given tiling set, regardless of the theorem applied.
However, the overall performance of each theorem is visualized through the total area occupied by the
corresponding colored bars.
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It is evident that in all five sub-areas, Theorem 1 has been performing better than other theorems
with regard to fulfilling the balance between area coverage and energy consumption. To add a further
illustration, a sketch of the best given tiling set is shown in Figure 13, which shows the following tiling
sets together:

• Tiling set 5 given by Theorem 1 for sub-area 1,
• Tiling set 5 given by Theorem 1 for sub-area 2,
• Tiling set 5 given by Theorem 1 for sub-area 3,
• Tiling set 5 given by Theorem 1 for sub-area 4,
• Tiling set 1 given by Theorem 1 for sub-area 5,

With reference to Tables 1–5, the whole additive energy value for this composition of the
highest-ranking tiling sets is 5.981 A and the whole area covered by this superior tiling set is 10.1136 m2

(95.9% of the entire area required to be cleaned). As it can be seen, the decision goal is fulfilled to a
satisfying extent in terms of the defined criteria since the entire energy can be provided by a one-time
battery charge (less than 7.4 A), and the area coverage is the highest available one.
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7. Evaluating the Robot Performance with and without the Tiling

Providing access to narrow and difficult spaces, self-reconfiguration is totally reasonable for
maximizing the area coverage. However, shape-shifting may sound a waste of energy. In this section,
a comparison is illustrated with a fixed-morphology robot with the same size (O reconfiguration
in Figure 3) that follows no tiling theory but tries to cover the area like the current commercialized
cleaning robots. Figure 14 shows nine such sweeping solutions for the entire experimental environment
in which each of the solutions appears with the corresponding numbering and each yellow square is
an O morphology, as depicted in Figure 3. In addition, the gray area is the area totally inaccessible
and the purple area is the area that is accessible at the expense of re-coverage. The total area coverage
percentage and utilized energy amount in each sweeping solution is summarized in Table 11 in which
the reported area is the covered area with avoidance of re-coverage, i.e., the whole area subtracted by
the gray and purple areas and the area occupied by obstacles.
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Figure 14. Sample sweeping solutions with fixed morphology and no tiling theory.
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Table 11. Energy and area coverage for fixed-morphologies with no tiling theorem.

Sweeping Solution Area-Coverage (%) Energy (A)

1 496/538 = 92.19% 5.23
2 496/538 = 92.19% 5.44
3 496/538 = 92.19% 5.87
4 496/538 = 92.19% 5.91
5 484/538 = 89.96% 6.67
6 484/538 = 89.96% 6.312
7 484/538 = 89.96% 6.18
8 496/538 = 92.19% 6.22
9 484/538 = 89.96% 6.48

Considering Table 11, it is obvious that the fixed-morphology performance was not as
energy-efficient as expected and its energy consumption for sweeping the entire space is almost
the same as the best alternative selected by MCDM (5.981 A) or even higher (worse) than that in some
cases (sweeping solution 5, 6, 7, 8, 9). However, the shape-shifting morphology evidently results in
higher area coverage. The results in Table 11 also justify this fact: In a fixed-morphology scheme with
no tiling-path-planning, we have, at most, 92% area coverage, but the approach presented in this paper
results in almost 96% area coverage, see Figure 13.

To summarize, when a higher area coverage is guaranteed by self-reconfiguration, and the
energy consumption in a fixed-morphology scheme is at the level of shape-shifting morphology
(slightly better: 5.98 − 5.23 = 0.75 (A) or even worse: 5.98 − 6.67 = −0.7 (A)), it sounds reasonable
to apply the MCDM-supported tiling path-planning even though it requires a slight compromise in
energy consumption.

8. Conclusions

By providing self-reconfiguration abilities for the cleaning robot, it can cope with limitations
associated with sweeping narrow corridors and far-to-access corners, making self-reconfigurable
robots very interesting for use as cleaners. In this regard, a Tetris-inspired mechanism has already been
proposed in our previous studies and, additionally, polyomino tiling theory has been introduced as a
means of path planning for such a mechanism. Previous studies in this field, have only considered area
coverage as the performance metric for the cleaning robot. Moreover, besides the amount of cleaned
area, the amount of battery usage (energy) is a significant issue. In this paper, we applied a MCDM
approach aimed at efficient cleaning in terms of energy and area coverage. This study has moved a
step forward regarding the quest to find the best alternative among given tiling maps in order to orient
the robot towards the optimal navigation.

To this end, in this study, four tiling set theorems are utilized to define the navigation maps for
the robot. Before applying the tiling theorems, the entire area is decomposed to five sub-areas based on
furniture layout. Then, the tiling theorems are applied to each sub-area separately to generate several
distinguished tiling sets. These are the alternatives analyzed from the area and energy viewpoint.
To balance the facing trade-off, a MCDM approach is applied by defining a fitness function in terms
of the decision criteria and finally, all the alternatives are ranked in terms of the resulting fitness
function. Based on the results of this ranking, one of the most recent theorems stood out, showing
a more efficient performance throughout all the sub-areas. Furthermore, a comparison between the
performance of a fixed-morphology and a shape-shifting mechanism is presented that further suggests
the MCDM-supported tiling path planning.

As a scope of future work, the area decomposition method can be improved based on cellular
decomposition supported by SLAM. Additionally, here, only the effect of area coverage and energy
are investigated as the decision criteria, while time is also an influencing factor in the hectic timetables
of people nowadays. Considering the required time as another aspect of the efficiency of a cleaning
application could be another aspect of future work. On the other hand, in this study, both the decisive
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factors in a MCDM process are regarded to be of the same value to the user. Defining the partial
importance of the decision criteria based on user preferences is actually not difficult to imagine.
This can also open an opportunity for incorporating fuzzy logic.
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