Comparing the substrate specificities of cytochrome c biogenesis Systems I and II

Research output: Contribution to journalArticle

View graph of relations Save citation

Authors

Research units

Abstract

c-Type cytochromes require specific post-translational protein systems, which vary in different organisms, for the characteristic covalent attachment of heme to the cytochrome polypeptide. Cytochrome c biogenesis System II, found in chloroplasts and many bacteria, comprises four subunits, two of which (ResB and ResC) are the minimal functional unit. The ycf5 gene from Helicobacter pylori encodes a fusion of ResB and ResC. Heterologous expression of ResBC in Escherichia coli lacking its own biogenesis machinery allowed us to investigate the substrate specificity of System II. ResBC is able to attach heme to monoheme c-type cytochromes c550 from Paracoccus denitrificans and c 552 from Hydrogenobacter thermophilus, both normally matured by System I. The production of holocytochrome is enhanced by the addition of exogenous reductant. Single-cysteine variants of these cytochromes were not efficiently matured by System II, but System I was able to produce detectable amounts of AXXCH variants; this adds to evidence that there is no obligate requirement for a disulfide-bonded intermediate for the latter c-type cytochrome biogenesis system. In addition, System II was able to mature an AXXAH-containing variant into a b-type cytochrome, with implications for both heme supply to the periplasm and substrate recognition by System II.

Request a copy

Request a copy

Details

Original languageEnglish
Pages (from-to)726-737
Number of pages12
JournalFEBS journal
Volume277
Issue number3
Early online date29 Dec 2009
DOIs
Publication statusPublished - Feb 2010

    Keywords

  • cytochrome c, cytochrome c maturation, heme, heme provision, system II

Employable Graduates; Exploitable Research

Copy the text from this field...