Attentional refocusing between time and space in older adults: investigation of neural mechanisms and relation to driving

Student thesis: Doctoral ThesisDoctor of Philosophy

View graph of relations Save citation

Authors

Research units

Abstract

Older adults have a disproportionately high risk of causing collisions at intersections and causing collisions by failing to notice surrounding road signs or signals. Collisions caused by older drivers seem to result from attentional failures. There is limited research exploring the ability to refocus from orienting attention to events changing in time (i.e. temporal attention) to distributing attention spatially (i.e. spatial attention), a process that is particularly important while driving and, if impaired,could cause collisions. The aims of the project were firstly to assess whether the ability to refocus attention from time to space changes throughout the adult lifespan when assessed with a computer based task and in an ecologically valid scenario during simulated driving, secondly, to use magnetoencephalography (MEG) to identify changes to neural mechanism that might explain difficulties in attentional refocusing, and finally, use mobile electroencephalography to explore the neural mechanisms involved in attentional refocusing while driving. Results demonstrated age related declines in the ability to refocus attention from time to space both in a computer-based task and during simulated driving. MEG recorded in a computer-based attention refocusing task revealed that, compared to younger adults, older and middle-aged adults displayed task-related theta deficits in lower level visual processing areas, and instead, displayed compensatory increases in theta power and phase-related connectivity across frontal regions. Increased frontal lobe recruitment likely reflects enhanced top-down attention to cope with impaired lower level attention mechanisms,supporting compensatory recruitment models of ageing. During simulated driving, older participants displayed slower driving speeds and weaker beta desynchronization in preparation to read a road sign, instead displaying a stronger theta power increase in response to the road sign, further demonstrating neural and behavioural compensatory strategies that are only partially successful.Findings warrant the development of a training programme to improve attentional refocusing between time and space while driving.

Details

Original languageEnglish
Awarding Institution
Supervisors/Advisors
Award date15 May 2018

    Keywords

  • visual spatial attention., visual temporal attention., ageing, magnetoencephalography, driving

If you have discovered material in the Aston Research Explorer, which is unlawful e.g. breaches copyright, (either theirs or that of a third party) or any other law, including but not limited to those relating to patent, trademark, confidentiality, data protection, obscenity, defamation, libel, then please read our Takedown Policy and contact the service immediately.

Employable Graduates; Exploitable Research

Copy the text from this field...