Overcoming the engineering constraints for scaling-up the state-of-the-art catalyst for tail-gas

\[\text{N}_2\text{O} \text{ decomposition} \]

Ignacio Melián-Cabrera,†,‡*, Silvia Espinosa,§ Cristina Mentruit,§ Blaine Murray,†,¶ Lorena Falco,†

Joseph Socci,† Freek Kapteijn§ and Jacob A. Moulijn§

† European Bioenergy Research Institute (EBRI), School of Engineering and Applied Science, Aston University, Aston Triangle, Birmingham, B4 7ET, United Kingdom.

‡ Aston Institute of Materials Research, School of Engineering and Applied Science, Aston University, Aston Triangle, Birmingham, B4 7ET, United Kingdom.

§ Catalysis Engineering, Chemical Engineering Department, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands.

KEYWORDS: environmental catalysis, scale-up, zeolites, N\textsubscript{2}O emissions, greenhouse gases.
GRAPHICAL ABSTRACT
ABSTRACT

An efficient process is reported for preparing a state-of-the-art Fe-ferrierite catalyst for N₂O decomposition under industrial tail-gas conditions. In the synthesis procedure we evaluate the very demanding constraints for scale-up; i.e. large reactor volumes are typically needed, long processing times and considerable amounts of waste water is generated. The proposed synthesis minimizes the amount of water used, and therefore the amount produced waste water is minimal; in this approach there is no liquid residual water stream that would need intensive processing. This has remarkable benefits in terms of process design, since the volume of equipment is reduced and the energy-intensive filtration is eliminated. This route exemplifies the concept of process intensification, with the ambition to re-engineer an existing process to make the industrial catalyst manufacture more sustainable. The so-obtained catalyst is active, selective and very stable under tail gas conditions containing H₂O, NO and O₂, together with N₂O; keeping a high conversion during 70 h time on stream at 700 K, with a decay of 0.01%/h, while the standard reference catalyst decays at 0.06%/h; hence it deactivates six times slower, with ~5% absolute points of higher conversion. The excellent catalytic performance is preliminary ascribed to the differential speciation.
1. Introduction

The decomposition of N$_2$O into N$_2$ and O$_2$ is a reaction with proven environmental benefits.1,2 The greenhouse warming potential (GHWP) of N$_2$O is 250-300 higher than that of CO$_2$,3 which means that eliminating relatively small N$_2$O gas emissions will have a large impact in terms of CO$_2$ equivalent reduction, as compared to CH$_4$ (GHWP of 28-36). Moreover, N$_2$O plays a role in ozone depletion. N$_2$O gas is principally emitted from anthropogenic sources; agriculture and chemical industry being the major sources. The chemical industry contributes in two major areas, viz., as by-products of adipic and nitric acid production. An attractive approach to synthesize N$_2$O-free adipic acid has been proposed by a photochemistry based approach using ozone and UV light,4 but currently the major adipic acid producers still apply cost-effective N$_2$O abatement technologies or NOx/N$_2$O retrofitting into the nitric acid process.5 Also in the case of nitric acid production plants, it is expected that these abatement routes will play a major role in the future, since retrofitting in existing plants will be needed for at least several decades. Several options have been claimed to deal with this. Metal oxide-based catalysts have been proposed for high temperature operation conditions, for instance below the Pt-Rh gauzes in the ammonia oxidation reactors.6,7 End-of-pipe catalysed direct N$_2$O decomposition has been recognized as an economically feasible option, in existing plants and it does not modify the nitric acid production.8

This work deals with the constraints to scale-up a state-of-the-art catalyst, leading to a new catalyst synthesis concept for the N$_2$O decomposition reaction under industrial tail-gas conditions. Ferrierite has been recognized as the most active zeolite support in combination with Fe species for this reaction under end-of-pipe conditions. The catalyst is prepared in such a way
that the methodology can be considered optimal for scale-up, and can be embedded in the green chemistry9 and process intensification principles.10 Due to the carefully-selected synthesis conditions, the overall process is simplified significantly in terms of less steps required, and reduced size of equipment.

The \(\text{N}_2\text{O} \) decomposition reaction can be catalysed by Fe-based zeolites, such as ZSM-5,11-15 Ferrierite,16-19 beta11,19-23 and TNU/IM-type zeolites.24 Various methods have been proposed for Fe incorporation, including wet-ion exchange, solid-state ion exchange, isomorphous substitution, steaming, chemical vapour deposition, among others. Wet-ion exchange is a simple methodology where a Fe-salt, dissolved in water, is contacted with the zeolite and Fe(II)/Fe(III) cations are exchanged on the Brønsted sites resulting in a Fe-exchanged zeolite.

Wet-ion exchange appears to be the simplest procedure commercially, resulting in a reproducible methodology. Various disadvantages, however, appear when the process would be scaled-up. Figure 1 shows a simplified process flow diagram for a metal-exchanged zeolite production facility based on wet ion exchange. The major drawbacks are highlighted as follows: 1) large volumetric reactors are needed; typically liquid/solid ratios higher than 5 kg\textsubscript{liquid}/kg\textsubscript{solid} are used, implying the need of large-volume reactors or, in other words, the conventional reactors work at a low volumetric efficiency; 2) the ion-exchange involves long processing times of around 10 to 24 h, which makes the process discontinuous; 3) a large amount of waste water is formed during the exchange, washing and filtering of the exchanged zeolite. As an example, for producing 10 t/day of catalyst, the generated waste water is around 50 m3/day for the exchange only.25 Such amount of produced waste water requires extra equipment for storage, and most importantly,
the water has to be treated before disposal to the surface water or municipal sewer system; usually nitrates are extensively present and denitrification based on bacterial degradation is commonly applied that makes the process costly.26 Finally, 4) filtration is energy intensive, with high processing costs due to the small size of the zeolite grains. Based on the above reasoning, new catalyst synthesis strategies for addressing these bottlenecks are to be developed, which is the basis of this work.

2. Experimental

2.1 Chemicals

The used chemicals are HNO\textsubscript{3}, Merk 65.0 wt.%; Fe(NO\textsubscript{3})\textsubscript{3}.9H\textsubscript{2}O, Acros 99.0 % metal basis; NH\textsubscript{4}NO\textsubscript{3}, Merk extra pure; hydrofluoric acid, Merk 40%. Ferrierite was kindly supplied by Tosoh, with material reference 720 KOA. Fe(III)-nitrate was chosen because it is typically the lowest-cost Fe salt precursor, while NH\textsubscript{4}NO\textsubscript{3} was employed due to the easy elimination of the NO\textsubscript{3}– in the downstream processing with a deNO\textsubscript{x} unit.

2.2 Zeolite pre-treatment

The as-received commercial zeolite having an FER structure27 is in the sodium-potassium form, and is formed by agglomerates of platelets and cylinders of different sizes and shapes. The average particle size ranges from 0.5 to 2 \(\mu \)m as determined by SEM, Figure 2. The sample was exchanged twice with a NH\textsubscript{4}NO\textsubscript{3} solution to get the ammonium form: once using a saturated solution (2.0 M at 353 K for 24 h) and then a milder exchange was applied (1.0 M same temperature and time). Between the ammonium treatments, the sample was filtered and washed repeatedly with distilled water to remove residual Na+ and K+. The effectiveness of this
exchange procedure was verified by ICP elemental analysis, as reported in Table 1. Cation exchange efficiencies of >99.9% for Na\(^+\) and 99.8% for K\(^+\) were obtained. We should note that this step is unavoidable. If the Fe(III) exchange is carried out on the Na/K form zeolite, the Fe cations would precipitate due to the high pH, resulting in a poor catalyst performance.

This step also produces quite some residual water, which could be optimized using the same concept as described here for the Fe-zeolite preparation. However, at this stage we found the NH\(_4\)NO\(_3\) washing step less attractive academically, compared with the Fe-exchange itself. Thus, the overall process is not yet fully optimized.

2.3 Catalyst preparation

2.3.1 Reference standard catalyst

The reference standard catalyst was prepared identically to the method described by Melian-Cabrera et al.\(^{17}\)

2.3.2 Static mode

The Fe(NO\(_3\))\(_3\) solution was prepared considering the total pore volume of the zeolite with a slight excess; the concept of the ‘total liquid pore volume’ is illustrated in Figure 3. In total, a ratio of 2.5 ml solution/g zeolite was employed. The pH was adjusted in the following way. Milli-Q water was adjusted to pH = 2 using diluted HNO\(_3\). The Fe-precursor was added to this solution, and the resulting solution was added to the NH\(_4\)-zeolite (described in 2.2). The exchange was performed at three increasing ageing times: 1, 6 and 24 h, resulting in three different samples. The preparation was carried out at room
temperature and after the Fe-exchange, water was removed by heating the sample at 363 K in a stove furnace overnight.

2.3.3 Dynamic mode

The procedure is very similar to the previous one. The solution was prepared in the same way, but after adding the zeolite, the sample was continuously stirred by means of a 2D shaker, as shown in Figure 3B. The ageing time was varied for 1, 6 and 24 h, resulting in three different samples. After the exchange, all the water was evaporated using a rotator evaporator set-up at 353 K.

2.4. Calcination

All the catalysts were calcined at 723 K for 4 h, prior to the activity tests.

2.5 Catalyst characterization

The elemental content of Na, K, Fe, Si and Al was determined by ICP, of the previously dissolved zeolites in a 6 wt.% HF solution, using a Perkin-Elmer Optima 3000DV.

SEM pictures were recorded with a Philips Scanning Electron Microscope (XL 20) at 10 kV. The sample was sputtered with gold three times using a standard gas plate metallizing chamber.

Temperature-programmed reduction with H$_2$ was performed in a Micromeritics TPD/TPR 2900 apparatus, using a high purity mixture of 10 vol.% H$_2$ in Ar as reducing mixture. A cold trap was used to remove the water stemming from the reduction before the gas of the reactor outlet was sent to the TCD. The experimental conditions were carefully chosen via the characteristic parameter $P (P = \beta \cdot S_0) / (\phi \cdot C_0)$, where: S_0 is the initial amount of reducible oxide (mol), ϕ the total flow rate (cm3/min), β the heating rate (K/min) and C_0 the initial H$_2$ concentration (mol/cm3).
The P parameter was smaller than 1 K, which is very conservative as compared to the recommended $P \leq 20$ K by Malet and Caballero.29

2.6 Catalytic activity tests

The activity tests were carried out in a parallel six-flow reactor set-up using approximately 50 mg of 125-250 μm catalyst particles. The applied conditions are as follows: 4.5 mbar N\textsubscript{2}O of a N\textsubscript{2}O/He mixture at a total pressure of 3 bar absolute, a space time of \(~900\) kg·s/mol ($W/F^0(\text{N}_2\text{O})$ where W is the catalyst mass and $F^0(\text{N}_2\text{O})$ the molar flow of N\textsubscript{2}O in the feed). The reactor outlet stream was analyzed on-line by gas chromatography; Chrompack CP 9001 equipped with a Poraplot Q column (for N\textsubscript{2}O and N\textsubscript{2}/O\textsubscript{2} separation) and a Molsieve 5A column (for N\textsubscript{2} and O\textsubscript{2}). Helium is used as carrier gas in the GC analysis instead of nitrogen in order to detect the nitrogen produced in the reaction. The catalysts were pretreated in a flow of He at 673 K for 1 h prior the reaction, and cooled down in the same gas to the starting reaction temperature. Steady state was achieved after 1 h on-stream, since the composition of the product flows were constant.

The catalyst was also tested under nitric acid-based tail gas conditions with the following composition: 4.5 mbar N\textsubscript{2}O, 0.6 mbar NO, 15 mbar H\textsubscript{2}O and 75 mbar O\textsubscript{2}, maintaining the same space time $W/F^0(\text{N}_2\text{O})$ of \(~900\) kg·s/mol at 3 bar(a) of total pressure. The feed is simulated by adding these components from more concentrated mixtures in helium. Stability tests were carried out under these conditions at 700 K for 70 h time on stream.
3. Results and discussion

The preparation method is based on the ‘total liquid pore volume’ concept (V^{LIQ}) to reach the caking end-point.28 The amount of solution used for exchange is enough to fill the V^{LIQ} of the material; for practical purposes a slight excess of liquid is used resulting in a liquid/solid = 2.5 (ml/g). The excess of water is necessary to allow the mixing of the material during the exchange and, in practice, making easier its handling. The low liquid use implies that the filtration step in Figure 1 can be eliminated, simplifying the overall process scheme and reducing the operational costs. In Figure 3, the typical experimental set-up is shown, where a two-dimensional shaker was employed in order to homogenize the so-obtained slurry. Since the method uses a minimal amount of water, this can be easily evaporated, while the anions are left on the zeolite’s surface. These anions decompose during the drying and calcination, and in a deNOx unit the produced NO$_x$ is reduced into N$_2$. Overall, this strategy avoids a large volume of nitrates containing waste water, which would require denitrification with bacterial broths, which is energy intensive and costly as reported elsewhere.26 The amount of water used is two times lower compared to the amount of water used in the most effective method in patent literature.25

The preparation rheology was the first studied parameter. Two variants were considered: a static versus a dynamic exchanging procedure. The main difference between them is that for the dynamic mode the slurry is shaken during the exchange, while the other variant is fully static. The results of the catalysts prepared by these two variants are presented in Figure 4 and 5; representing the N$_2$O conversion as a function of the reaction temperature. The graphs include various catalyst samples prepared at increasing exchange time (i.e. 1, 6 and 24 h). A benchmarked Fe-FER catalyst having similar Fe loading, which gave excellent results in terms of activity and
stability, was used as reference standard.17 This reference catalyst is the most active for this reaction under end-of-pipe conditions,16,17,25 it was prepared in house by wet-ion exchange of iron nitrate at pH of 2.5 with 0.5 wt. % nominal loading of iron.

Results of the static-based catalysts do show quite some differences in the activity profiles (Figure 4). For long exchange time (24 h), the activity decreased considerably. For exchange times of 1 and 6 h the catalysts show similar levels of N$_2$O conversion, which were always below the performance of the reference catalyst. Because of the lower N$_2$O conversion than the reference catalyst, a dynamic variant was investigated subsequently.

The results are different for the dynamic wetness impregnation (Figure 5). Similar activity levels were achieved for all the exchange times. It should be noted that the activity of all these catalysts was as good as that of the reference catalyst, and more active than the static counterparts. No significant differences by increasing the exchange time were found; it means that it is possible to achieve a highly active N$_2$O decomposition catalyst by using a short exchange time with small liquid volumes.

An interpretation for the differences between dynamic and static conditions could be found in the mass transfer: under stirred conditions concentration gradients in the slurry may cancel out, improving the concentration distribution over the particles. Whereas under the static mode, the metal deposition could further be occurring unevenly due to agglomerate formation.

The optimal Fe-FER catalyst (dynamic, 1 h) was tested under practical conditions of the nitric acid plant tail-gases. These conditions are more appropriate than only in N$_2$O/He in order to evaluate its applicability as an end-of-pipe catalytic technology. Typical gases and concentrations found in
Tail gases of nitric acid plants are NO (200 ppm), O₂ (2.5 vol.%) and H₂O (0.5 vol.%) together with N₂O (1500 ppm). Figure 6 presents the N₂O conversion for the optimal Fe-FER catalyst both in N₂O/He and in the presence of tail gas components. The presence of tail-gas components has no significant impact on the catalyst performance. The activity obtained under tail gas conditions was only slightly lower than with pure N₂O/He; a very positive result. Previous investigations on the effect of every individual component revealed a clear promoting effect of NO, counterbalanced by water inhibition, while O₂ has a neutral impact.17

The stability of the catalyst was further investigated by an isothermal test under tail gas conditions with increasing time on stream (TOS) up to 70 h. In Figure 7 the stability is compared with the reference catalyst. The obtained results are excellent; the optimal catalyst keeps a high conversion during the whole period of time, with a decay of only 0.01%/h, while the reference catalyst decays at a rate of 0.06%/h; i.e. the optimal catalyst deactivates six times slower over the same TOS range. A second finding is that the optimal catalyst yields ~5% absolute points of higher conversion than the reference catalyst.

Preliminary characterization shows that the Fe content was close to the nominal value, 0.47 wt.% Fe and the Si/Al ratio was 8.7. The slightly lower Fe loading than the theoretical value 0.50 wt.% can be explained by the H⁺/Fe³⁺ competition during the exchange; as discussed elsewhere.30 The Si/Al ratio is comparable to that of the as-received zeolite material (8.9). Temperature-programmed reduction (TPR) characterization shed some light on the type of Fe species formed during exchange, on both the optimal and reference catalysts. The TPR profiles for both catalysts reveal two clear reduction peaks at low temperatures, at ~600 and ~700 K (Figure 8). This region
corresponds to the reduction of the Fe$^{3+}$ in exchanged positions (cations and oxocations) on the zeolite framework.16 The optimal catalyst shows a fraction of Fe$_2$O$_3$ species, represented by the broad peak centred at 800 K,30 that accounts for ca. 10% of the Fe, based on a TPR quantification method for Fe-zeolites.31 The presence of only such a small Fe$_2$O$_3$ fraction is unexpected thermodynamically, if we take into account that the concentration of the used Fe solution was 100 times higher than the solution used for the reference catalyst: 3.71×10$^{-2}$ M versus 3.71×10$^{-4}$ M, respectively. In view of the solubility at pH = 2 of 2.7×10$^{-3}$ M (using $K_{SP} = 2.7×10^{-39}$),32 precipitation of Fe(OH)$_3$ is thermodynamically expected for our catalyst synthesis conditions. Apparently, the kinetics of the Fe$^{3+}$ exchange is faster than the Fe(OH)$_3$ precipitation.

Several groups have evidenced that TPR provides relevant information on the Fe species present. Guzmán-Vargas et al.16 compared the performance of Fe-BEA, -ZSM-5 and -FER catalysts with TPR results. They found for FER the largest amounts of “oxo-species” reducible at low temperature. This was confirmed by Jiša et al.33 who also reported a correlation between the low-temperature reduction and the N$_2$O conversion; in both studies the dissociation of N$_2$O was studied under model conditions, i.e. not under realistic tail gas conditions.

The TPR patterns (Figure 8) evidence the presence of Fe-exchanged active species, namely those reduced at ~600 and ~700 K, for the optimal catalyst as well as for the reference catalyst (and some Fe$_2$O$_3$ species for the optimal catalyst). The optimal catalyst has a different Fe speciation than the reference catalyst, with more of the 700 K species; this is tentatively attributed to a difference in distribution of the optimal active sites. This suggests that the second Fe species reduction peak may represent the most optimal active sites. The sites reduced at lower
temperature are also active, otherwise the reference catalyst would not be about equally active. Ultimately, the FeOx peak probably does not represent sites with a high activity since it has a low intrinsic activity.11

4. Conclusions

A synthesis strategy of Fe-Ferrierite, the state-of-the-art tail gas N₂O decomposition catalyst, has been proposed circumventing constraints for scale-up. The method minimizes the amount of waste water produced and this has benefits from the process design point of view. The catalyst synthesis method utilizes only slightly more water compared to the total liquid pore volume of the zeolite. Consequently, it does not produce waste water that would require intensive processing. The catalyst shows excellent performance under end-of-pipe nitric acid conditions, which is attractive for retrofitting existing plants, with potential substantial savings in greenhouse gas emissions. In terms of process design, the proposed route simplifies the scale-up since the required equipment will be smaller (ion-exchange reactor) or can be avoided (filtration step). Further, the processing costs will be lower due to the low exchange times, and the elimination of filtration costs that are often considerable due to the small size of the zeolite grains.

AUTHOR INFORMATION

Corresponding Author: i.melian-cabrera@aston.ac.uk (Ignacio V. Melián Cabrera)
ACKNOWLEDGMENTS

This work was supported by the European Commission (HPMF-CT-2002-01873) started in Delft University of Technology and completed in EBRI, Aston University. B.M., L.F. and J.S. thank the School of Engineering and Applied Science, Aston University, for financial support.

REFERENCES

Table 1. Na and K content before and after ion exchange NH₄-treatment of the parent ferrierite.

<table>
<thead>
<tr>
<th>Material</th>
<th>Na</th>
<th>K</th>
</tr>
</thead>
<tbody>
<tr>
<td>As-received a</td>
<td>1.2 wt. %</td>
<td>1.2 wt. %</td>
</tr>
<tr>
<td>After NH₄-treatment</td>
<td>< 10 ppm (99.9)b</td>
<td>82 ppm (99.8)b</td>
</tr>
</tbody>
</table>

a Commercial specifications
b Values between parentheses are the cation exchange efficiency (%).

Figure 1. The constraints for the scale-up of a state-of-the-art Fe-Ferrierite N₂O decomposition catalyst are highlighted. The process flow diagram describes the steps of a Fe-exchange zeolite facility highlighting the major bottlenecks: 1) high volumetric requirements; 2) long exchange processing times (i.e. discontinuous process); 3) a large volume of generated waste water that needs to be processed before emission, by denitrification based bacterial degradation and 4) filtration is an energy-intensive and slow process, limited by the zeolite grain size.
Figure 2. SEM image of the investigated Ferrierite.

Figure 3. A) Definition of the ‘total liquid pore volume’ (V°_LIQ). This parameter is determined visually based on the method proposed by Innes.²⁸ Such values are higher than those determined from gas adsorption. B) Experimental set-up used for the dynamic Fe³⁺ exchange of this study. Note that Innes²⁸ in the original work did not report a graphical illustration of the method.
Figure 4. Static wetness impregnation for different exchange times. N$_2$O decomposition conversion as a function of the reaction temperature for 0.5 wt.% Fe-FER catalysts prepared under wetness conditions (liquid/solid = 2.5) and the reference standard. Reaction conditions: 3 bar(a) total pressure and W/F = 8.95×102 kg·s/mol, He balance.
Figure 5. Dynamic wetness impregnation for different exchange times. N₂O decomposition conversion as a function of the reaction temperature for 0.5 wt.% Fe-FER catalysts prepared under wetness conditions (liquid/solid = 2.5) and the reference standard. Reaction conditions: 3 bar(a) total pressure and W/F = 8.95×10² kg·s/mol, He balance.
Figure 6. Comparison for the optimal catalyst (dynamic, 1h) under N$_2$O/He (○, 1500 ppm N$_2$O) and tail gas conditions (●, 1500 ppm N$_2$O, 200 ppm NO, 2.5% O$_2$ and 0.5% H$_2$O). Reaction conditions: 3 bar(a) total pressure and W/F = 8.95×102 kg·s/mol, He balance.
Figure 7. Stability test under tail gas conditions for the optimal (dynamic, 1h) and reference catalysts at 700 K, given as N₂O conversion as a function of the time on stream (TOS). Red lines are the linear regression correlations, and the indicated numbers are the slope as %/h. Reaction conditions: 3 bar(a) total pressure and W/F = 8.95×10² kg·s/mol, He balance.
Figure 8. H$_2$-TPR profiles of the Fe-FER zeolites, optimal (dynamic, 1h) versus reference catalyst. Conditions: H$_2$/Ar, 10%; ramp: 10 K/min. The FeOx contribution of the optimal catalyst is highlighted to indicate that it is relatively small as compared to what is expected from the thermodynamic values, as discussed in the text.