Bright-dark rogue wave in modelocked fibre laser (Conference Presentation)

Hani Kbashi
Stanislav Kolpakov
Amós Martinez
Chengbo Mou
Sergey V. Sergeyev
Bright-dark rogue wave in mode-locked fibre laser
(Conference Presentation)

Hani Kbashi, Aston Univ. (United Kingdom); Stanislav A. Kolpakov, Amós Martinez, Aston Institute for Photonics Technologies, Aston Univ. (United Kingdom); Chengbo Mou, Shanghai Univ. (China); Sergey V. Sergeyev, Aston Institute for Photonics Technologies, Aston Univ. (United Kingdom)

ABSTRACT

Bright-Dark Rogue Wave in Mode-Locked Fibre Laser
Hani Kbashi¹*, Amos Martinez¹, S. A. Kolpakov¹, Chengbo Mou, Alex Rozhin¹, Sergey V. Sergeyev¹
¹Aston Institute of Photonic Technologies, School of Engineering & Applied Science Aston University,
Birmingham, B4 7ET, UK
kbashihj@aston.ac.uk , 0044 755 3534 388

Keywords: Optical rogue wave, Bright-Dark rogue wave, rogue wave, mode-locked fiber laser, polarization instability.

Abstract:
Rogue waves (RWs) are statistically rare localized waves with high amplitude that suddenly appear and disappear in oceans, water tanks, and optical systems [1]. The investigation of these events in optics, optical rogue waves, is of interest for both fundamental research and applied science. Recently, we have shown that the adjustment of the in-cavity birefringence and pump polarization leads to emerge optical RW events [2-4]. Here, we report the first experimental observation of vector bright-dark RWs in an erbium–doped stretched pulse mode-locked fiber laser. The change of induced in-cavity birefringence provides an opportunity to observe RW events at pump power is a little higher than the lasing threshold. Polarization instabilities in the laser cavity result in the coupling between two orthogonal linearly polarized components leading to the emergence of bright-dark RWs. The observed clusters belongs to the class of slow optical RWs because their lifetime is of order of a thousand of laser cavity roundtrip periods.

References:

View presentation recording on the SPIE Digital Library:
http://dx.doi.org/10.1117/12.2265038.5463341892001