Computer Methods for the Heat Conduction Equation

  • Paul T. Cameron

Student thesis: Doctoral ThesisDoctor of Philosophy


The merits of various numerical methods for the solution of the one and two dimensional heat conduction equation with a radiation boundary condition have been examined from a practical standpoint in order to determine accuracies and
efficiencies. It is found that the use of five increments to approximate the space derivatives gives sufficiently accurate results provided the time step is not too large; further, the implicit backward difference method of Liebmann (27) is found to be the most accurate method. On this basis, a new implicit method is proposed for the solution of the three-dimensional heat conduction equation with radiation
boundary conditions.
The accuracies of the integral and analogue computer
methods are also investigated.
Date of AwardNov 1967
Original languageEnglish
Awarding Institution
  • Aston University
SupervisorB. Gay (Supervisor)


  • computer methods
  • heat conduction

Cite this