Dipole moments and Kerr effect of poly(n-vinylcarbazole) and its complexes with trinitrofluorenone

  • Mohammed Fiaz

Student thesis: Doctoral ThesisDoctor of Philosophy

Abstract

N-vinylcarbazole was polymerised using the free radical catalyst (azo-bisisobutyronitrile) and cationic catalysts (boron-trifluoride etherate and aluminium chloride). The polymers produced were characterised by molecular weight measurements and powder x-ray diffraction. The tacticity of the polymer samples was determined using proton and carbon-13 nuclear magnetic resonance spectroscopy.
Measurements of their static dielectric permittivity and electro-optical birefringence (Kerr effect) in solution in 1,4-dioxane were carried out over a range of temperatures. The magnitudes of the dipole moments and Kerr constants were found to vary with changes in the tacticity of poly(N-vinylcarbazole). The results of these measurements support the view that the stereostructure of poly(N-vinylcarbazole) is sensitive to the mechanism of polymerisation. These results, together with proton and carbon-13 N.M.R. data, are discussed in terms of the possible conformations of the polymer chains and the relative orientation of the bulky carbazole side groups.
The dielectric and molecular Kerr effect studies have also been carried out on complexes formed between 2,4,7-trinitro-9-fluorenone (TNF) and different stereoregular forms of poly(N-vinylcarbazole) in solution in 1,4-dioxane. The differences in the molar Kerr constants between pure (uncomplexed) and complexed poly(N-vinylcarbazole) samples were attributed to changes in optical anisotropy and dipole moments.
A molecular modelling computer program Desktop Molecular Modeller was used to examine the 3/1 helical isotactic and 2/1 helical syndiotactic forms of poly(N-vinylcarbazole). These models were used to calculate the pitch distances of helices and the results were interpreted in terms of van der Waal's radii on TNF. This study indicated that the pitch distance in 3/1 isotactic helices was large enough to accommodate the bulky TNF molecules to form sandwich type charge transfer complexes whereas the pitch distance in syndiotactic poly(N-vinylcarbazole) was smaller and would not allow a similar type of complex formation.
Date of AwardMar 1994
Original languageEnglish
SupervisorMartin S Beevers (Supervisor)

Keywords

  • dielectric permitivity
  • electro-optical birefringence
  • charge transfer
  • stereoregular
  • temperature coefficient

Cite this

'