Abstract
Elevated free fatty acids (FFA) are a feature of ageing and a risk factor for metabolic disorders such as cardiovascular disease (CVD) and type-2 diabetes (T2D). Elevated FFA contribute to insulin resistance, production of inflammatory cytokines and expression of adhesion molecules on immune cells and endothelial cells, risk factors for CVD and T2D.Molecular mechanisms of FFA effects on monocyte function and how FFA phenotype is affected by healthy ageing remain poorly understood. This thesis evaluated the effects of the two major FFA in plasma, oleate and palmitate on monocyte viability, cell surface antigen expression, and inflammatory activation in THP-1 monocytes. Palmitate but not oleate increased cell surface expression of CD11b and CD36 after 24h, independent of mitochondrial superoxide, but dependent on de novo synthesis of ceramides.
LPS-mediated cytokine production in THP-1 monocytes was enhanced and decreased following incubation with palmitate and oleate respectively. In a model of monocyte-macrophage differentiation, palmitate induced a pro-inflammatory macrophage phenotype which required de novo ceramide synthesis, whilst oleate reduced cytokine secretion, producing a macrophage with enhanced clearance apoptotic cells.
Plasma fatty acid analysis in young and mid-life populations revealed age-related increases in both the SFA and MUFA classes, especially the medium and very long chain C14 and C24 fatty acids, which were accompanied by increases in the estimated activities of desaturase enzymes. Changes were independently correlated with increased PBMC CD11b, plasma TNF-a and insulin resistance.
In conclusion, the pro-atherogenic phenotype, enhanced LPS responses in monocytes, and pro-inflammatory macrophage in the presence of palmitate but not oleate is reliant upon de novo ceramide synthesis. Age-related increases in inflammation, cell surface integrin expression are related to increases in both the MUFA and SFA fatty acids, which in part may be explained by altered de novo fatty acid synthesis.
Date of Award | 22 Nov 2013 |
---|---|
Original language | English |
Awarding Institution |
|
Supervisor | Helen R Griffiths (Supervisor) & Clifford Bailey (Supervisor) |
Keywords
- fatty acids
- monocytes
- ageing