Living cationic polymerization

  • Robert M. Endsor

Student thesis: Doctoral ThesisDoctor of Philosophy

Abstract

The kinetics of the polymerization of styrene iniated by 1-chloro-1-phenyltehane/tin (IV) chloride in the presence of tetrabutylammonium chloride have been studied. Dilatometry studies at 25 °C were conducted and the orders of reaction were established. Molecular weight studies were conducted for these experiments using size exclusion chromatography. These studies indicated that transfer/termination reactions were present. The observed kinetics may be explained by a polymerization mechanism involving a single propagating species which is present in low concentrations. Reactions at 0 °C and -15 °C have shown that a "living" polymerization could be obtained at low temperatures. A method was derived to study the kinetics of a "living" polymerization by following the increase in degree of polymerization with time. Polymerizations of styrene were conducted using 1,4-bis(bromomethyl)benzene as a difunctional co-catalyst. These reactions produced polymers with broad or bimodal molecular weight distributions. These observations may be explained by the rate of initiation being slower than the rate of propagation or the presence of transfer/termination reactions. Reactions were conducted using a co-catalyst using a co-catalyst produced by the addition of 1,1-diphenylethane to 1,4-bis(bromomethyl)benzene. Size exclusion chromatography studies showed that the polymers produced had a narrower molecular weight distribution than those produced by polymerizations initiated by 1,4-bis(bromomethyl)benzene alone. However the polydispersity was still observed to increase with reaction time. This may also be explained by slow initiation compared to the rate of propagation. Polymerizations initiated by both bifunctional initiators were examined using the method of studying reaction kinetics by following the change in number average degree of polymerization. The results indicated that a straight line relationship could also be obtained with a non-living polymerization.
Date of AwardSep 1997
LanguageEnglish
SupervisorAllan J Amass (Supervisor)

Keywords

  • styrene
  • tin (IV) chloride
  • difunctional co-catalyst
  • oxetane

Cite this

Living cationic polymerization
Endsor, R. M. (Author). Sep 1997

Student thesis: Doctoral ThesisDoctor of Philosophy