Mechanisms of drying of particulate slurries

  • G.S. Bains

Student thesis: Doctoral ThesisDoctor of Philosophy

Abstract

The literature on the evaporation of pure liquid drops and the drying of drops of solutions and slurries has been reviewed with particular reference to spray drying. A 0.1-0.2 mm glass filament-thermocouple was constructed and used to study simultaneously, heat and mass transfer from a single suspended drop placed in a humidity and temperature controlled, 28 mm OD vertical wind tunnel. Heat conduction through the filament was minimised eg at 100¦C it accounted for only 9.3% of the total heat transferred to a drop. Evaporation of single water drops was also studied in a 101 mm OD vertical wind tunnel. The Nusselt number was found to be a function of the Reynolds, Prandtl and Transfer number over an air temperature range of 17¦C to 107¦C. The proposed correlation is: Nu = 2+(-12.96B+0.76)Re¦-5Pr0-33 Experimental drying studies were carried out on single suspended 1 to 2.5 mm diameter drops of aqueous sodium sulphate decahydrate, sodium chloride, potassium sulphate, copper sulphate and sodium acetate solutions and slurries at temperatures of 20¦C to 124¦C. Dried crusts were examined by Scanning Electron Microscopy. The drying history of any material depended upon the nature of the crust formed. Sodium acetate formed a non-rigid skin prior to the formation of a rigid crust. A modified receding evaporation interface model was proposed for the drying of solutions and slurries. This covered both the constant rate period prior to crust formation and the subsequent falling rate period. The model was solved numerically for the variation in core temperature, drop weight and crust thickness. Good agreement was obtained between model predictions and experimental results for materials forming rigid crusts i.e. sodium sulphate decahydrate, sodium chloride, potassium sulphate and copper sulphate. However, the drying histories of drops of 10-20% weight initial concentration sodium acetate were unpredictable since formation of a non-rigid skin deviated from the model assumption of a rigid outer surface. At higher initial concentrations (40% weight) where a rigid crust was formed for sodium acetate, good agreement was obtained between experimental results and model predictions. Single suspended drop studies are concluded to provide a valuable insight into the drying mechanisms of specific solutions and slurries.
Date of AwardMay 1990
Original languageEnglish

Keywords

  • droplet evaporation
  • droplet drying
  • receding evaporation interface

Cite this

'