Performance Evaluation of Raman Amplifiers in Fibre Optic Communication Systems

Student thesis: Doctoral ThesisDoctor of Philosophy


This thesis presents an overview of Raman amplifiers in fibre optic transmission systems. Detailed analysis of the nonlinear accumulated noise and relative intensity noise (RIN) induced penalties are evaluated in discrete and distributed Raman amplifiers. In addition to these the thesis also includes different architectures of Raman amplifiers enabling multiband transmission.

The parametric dependency of fibre chromatic dispersion (CD) on the accumulated nonlinear noise in discrete Raman amplifiers (DRAs) was studied both theoretically and experimentally. Analytical modelling was performed over different fibre types that are widely used as a gain medium in DRAs. It was found that systems using Raman gain fibres with a positive value of CD induce lower accumulated nonlinear noise in comparison to systems using Raman gain fibres with a negative value of CD. The results obtained from the analytical model were then validated experimentally over a long-haul transmission system with DRAs as an inline amplifier using a recirculation loop.

RIN-induced penalties in distributed Raman amplifiers (DiRAs) were experimentally studied in two standard single-mode fibre (SSMF) G.654.E©TXF and G.652.D with different pumping schemes. Signal RIN for G.654.E© TXF was found to be lower in comparison to its counterpart G.652.D. The impact of RIN on the short-haul system was validated using both the test fibres pumped in a forward-pumped distributed Raman. Similarly, backward and bidirectional pumping was performed over a long-haul transmission system using a recirculation loop. It was experimentally observed that RIN-induced transmission penalties for G.654.E are lower in comparison to G.652.D making it a better choice of SSMF type for distributed amplification.

Experiments on novel architectures such as cascaded dual-stage and dual-band designs were demonstrated over a coherent transmission system with S-, C- and L-band signals. It was observed that the dual-stage design requires a guard band of ~10 nm to prevent overlapping of the pumps and signal, reducing the overall transmission capacity. In contrast, for dual-band design, no such guard band was required, but this benefit comes at a cost of the additional pump requirement increasing the overall amplifier power consumption. The performances of novel multistage Raman amplifier structures were also evaluated over the E-, S-, C- and L-band. Experimental studies were performed independently using DRAs only, hybrid bismuth-DRA and hybrid distributed-DRA. The E- and S-band signals were seen to have higher performance penalties in comparison to C- and L-band signals in the case of DRAs only and hybrid bismuth-DRA. In contrast, for the hybrid distributed-discrete design, the E-band signals were seen to have a similar penalty as C- and L-band signals.
Date of AwardJan 2023
Original languageEnglish
SupervisorWladek Forysiak (Supervisor) & Sergei Turitsyn (Supervisor)


  • Raman amplification
  • coherent transmission
  • multiband transmission
  • ultra-wideband amplifiers

Cite this