Petrology of weathered lower lias clays

  • J.M. Coulthard

Student thesis: Doctoral ThesisDoctor of Philosophy

Abstract

In weak argillaceous rocks the unweathered strength may be barely sufficient to meet civil engineering reguirements and any reductjon due to weathering will be critical. This study investigates the weathering of the Lower Lias clays with particular reference to their petrography and engineering properties.
Investigations revealed the Midland Basin of deposition to contain reasonable thicknesses of clay, relatively uniform in nature with a well developed weathered zone, From the available exposures, the weathering zone of the Blockley Clay pit was selected and sampled for laboratory investigations of; Structure, Mineralogy and Chemistry and Engineering Properties.
The nature and orientation of the fissures in the unweathered clay were analysed. A close relationship was found to exist between the major joint set and the ground surface, with stress release due to excavation being almost negligible. Thin sections of the clay, examined for structural data, suggested that there exist layers or areas that have been disturbed as a result of density differences.
Shear planes were found in both the unweathered and weathered clay, in the latter case often associated with remoulding of the material. A direct measure of remoulding was obtained from the birefringence ratio.
The fabric was examined in closer detail using the scanning electron microscope. Mineralogy, as revealed by X-ray and optical techniques indicated illite as the dominant clay mineral, with kaolinite subsidiary; quartz, calcite, pyrite, chlorite/vermiculite are present as accessory minerals. Weathering changes this relationship, calcite and pyrite being removed early in the process, with illite being degraded. The cementing action of calcite and iron oxides was investigated however, this was shown to be negligible.
Quantitative measurements of both fixed (with minerals) and free (oxide coatings) iron were obtained by atomic absorption, with the Fe 3+/ Fe2+ ratio obtained by Mossbauer spectroscopy, Evidence indicates that free iron oxide coatings only become important as a result of weathering with the maximum concentration in the very highly weathered material.
Engineering index properties and shear strength values were taken throughout the profile, Relationships between moisture content and strength, liquid limit and iron (Fe) were obtained and a correlation between the weathering zomes and the shear strength/depth curve has been established.
Date of AwardJan 1975
Original languageEnglish
SupervisorJ.A. Morton (Supervisor) & K. Starzewski (Supervisor)

Keywords

  • Petrology
  • weathered lower lias clays

Cite this

'