The application of computerised modelling techniques in manufacturing system design

  • Keith Bridge

Student thesis: Doctoral ThesisDoctor of Philosophy


The absence of a definitive approach to the design of manufacturing systems signifies the importance of a control mechanism to ensure the timely application of relevant design techniques. To provide effective control, design development needs to be continually assessed in relation to the required system performance, which can only be achieved analytically through computer simulation. The technique providing the only method of accurately replicating the highly complex and dynamic interrelationships inherent within manufacturing facilities and realistically predicting system behaviour.

Owing to the unique capabilities of computer simulation, its application should support and encourage a thorough investigation of all alternative designs. Allowing attention to focus specifically on critical design areas and enabling continuous assessment of system evolution. To achieve this system analysis needs to efficient, in terms of data requirements and both speed and accuracy of evaluation.

To provide an effective control mechanism a hierarchical or multi-level modelling procedure has therefore been developed, specifying the appropriate degree of evaluation support necessary at each phase of design. An underlying assumption of the proposal being that evaluation is quick, easy and allows models to expand in line with design developments. However, current approaches to computer simulation are totally inappropriate to support the hierarchical evaluation.

Implementation of computer simulation through traditional approaches is typically characterized by a requirement for very specialist expertise, a lengthy model development phase, and a correspondingly high expenditure. Resulting in very little and rather inappropriate use of the technique. Simulation, when used, is generally only applied to check or verify a final design proposal. Rarely is the full potential of computer simulation utilized to aid, support or complement the manufacturing system design procedure.

To implement the proposed modelling procedure therefore the concept of a generic simulator was adopted, as such systems require no specialist expertise, instead facilitating quick and easy model creation, execution and modification, through simple data inputs. Previously generic simulators have tended to be too restricted, lacking the necessary flexibility to be generally applicable to manufacturing systems. Development of the ATOMS manufacturing simulator, however, has proven that such systems can be relevant to a wide range of applications, besides verifying the benefits of multi-level modelling.
Date of AwardNov 1990
Original languageEnglish
SupervisorDouglas M Love (Supervisor)


  • simulation
  • manufacturing system design
  • generic models
  • manufacturing simulators
  • hierarchical modelling

Cite this