Long-term impacts of prenatal synthetic glucocorticoids exposure on functional brain correlates of cognitive monitoring in adolescence

Research output: Contribution to journalArticle

View graph of relations Save citation

Open

Authors

Research units

Abstract

The fetus is highly responsive to the level of glucocorticoids in the gestational environment. Perturbing glucocorticoids during fetal development could yield long-term consequences. Extending prior research about effects of prenatally exposed synthetic glucocorticoids (sGC) on brain structural development during childhood, we investigated functional brain correlates of cognitive conflict monitoring in term-born adolescents, who were prenatally exposed to sGC. Relative to the comparison group, behavioral response consistency (indexed by lower reaction time variability) and a brain correlate of conflict monitoring (the N2 event-related potential) were reduced in the sGC exposed group. Relatedly, source localization analyses showed that activations in the fronto-parietal network, most notably in the cingulate cortex and precuneus, were also attenuated in these adolescents. These regions are known to subserve conflict detection and response inhibition as well as top-down regulation of stress responses. Moreover, source activation in the anterior cingulate cortex correlated negatively with reaction time variability, whereas activation in the precuneus correlated positively with salivary cortisol reactivity to social stress in the sGC exposed group. Taken together, findings of this study indicate that prenatal exposure to sGC yields lasting impacts on the development of fronto-parietal brain functions during adolescence, affecting multiple facets of adaptive cognitive and behavioral control.

Documents

  • Long-term impacts of prenatal synthetic glucocorticoids exposure on functional brain correlates

    Rights statement: This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. Te images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. © The Author(s) 2018

    Final published version, 1 MB, PDF-document

    Licence: CC BY Show licence

Details

Original languageEnglish
Article number7715
JournalScientific Reports
Volume8
Issue number1
DOIs
Publication statusPublished - 16 May 2018

Bibliographic note

This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. Te images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. © The Author(s) 2018

Employable Graduates; Exploitable Research

Copy the text from this field...