Robust automatic mapping algorithms in a network monitoring scenario

Research output: Chapter in Book/Report/Conference proceedingChapter

View graph of relations Save citation

Authors

Research units

Abstract

Automatically generating maps of a measured variable of interest can be problematic. In this work we focus on the monitoring network context where observations are collected and reported by a network of sensors, and are then transformed into interpolated maps for use in decision making. Using traditional geostatistical methods, estimating the covariance structure of data collected in an emergency situation can be difficult. Variogram determination, whether by method-of-moment estimators or by maximum likelihood, is very sensitive to extreme values. Even when a monitoring network is in a routine mode of operation, sensors can sporadically malfunction and report extreme values. If this extreme data destabilises the model, causing the covariance structure of the observed data to be incorrectly estimated, the generated maps will be of little value, and the uncertainty estimates in particular will be misleading. Marchant and Lark [2007] propose a REML estimator for the covariance, which is shown to work on small data sets with a manual selection of the damping parameter in the robust likelihood. We show how this can be extended to allow treatment of large data sets together with an automated approach to all parameter estimation. The projected process kriging framework of Ingram et al. [2007] is extended to allow the use of robust likelihood functions, including the two component Gaussian and the Huber function. We show how our algorithm is further refined to reduce the computational complexity while at the same time minimising any loss of information. To show the benefits of this method, we use data collected from radiation monitoring networks across Europe. We compare our results to those obtained from traditional kriging methodologies and include comparisons with Box-Cox transformations of the data. We discuss the issue of whether to treat or ignore extreme values, making the distinction between the robust methods which ignore outliers and transformation methods which treat them as part of the (transformed) process. Using a case study, based on an extreme radiological events over a large area, we show how radiation data collected from monitoring networks can be analysed automatically and then used to generate reliable maps to inform decision making. We show the limitations of the methods and discuss potential extensions to remedy these.

Documents

  • Ingram2008GeoEnvRobust.pdf

    Rights statement: geoENV 2008, 8-10 September 2008, Southampton (UK). The original publication is available at www.springerlink.com

    1 MB, PDF-document

Details

Publication date29 May 2010
Publication titlegeoENV VII – Geostatistics for Environmental Applications: proceedings of the seventh European Conference on Geostatistics for Environmental Applications
PublisherSpringer
Pages359-370
Number of pages12
Volume16
ISBN (Print)9789048123216
Original languageEnglish

Bibliographic note

geoENV 2008, 8-10 September 2008, Southampton (UK). The original publication is available at www.springerlink.com

    Keywords

  • monitoring network context, network of sensors, interpolated maps, geostatistical methods, covariance structure, emergency situation, variogram determination, extreme values, REML estimator, damping parameter, parameter estimation, component Gaussian, Huber function

DOI

Download statistics

No data available

Employable Graduates; Exploitable Research

Copy the text from this field...