A novel remaining useful life prediction framework for lithium-ion battery using grey model and particle filtering

Lin Chen, Huimin Wang, Jing Chen, Jingjing An, Bing Ji, Zhiqiang Lyu, Wenping Cao, Haihong Pan*

*Corresponding author for this work

Research output: Contribution to journalArticle

Abstract

An accurate remaining useful life (RUL) prediction method is significant to optimize the lithium-ion batteries' performances in an intelligent battery management system. Since the construction of battery models and the initialization of algorithms require a large amount of data, it is difficult for conventional methods to guarantee the RUL prediction accuracy when the available data are insufficient. To solve this problem, a synergy of sliding-window grey model (SGM) and particle filter (PF) is exploited to build an innovative framework for battery RUL prediction. The SGM is adopted to explore the modelling of battery capacity degradation, and it characterizes the capacity changes during the battery's life-time with a few data (eg, 8 data points). To promote the accuracy and traceability of prediction, the development coefficient of the SGM, which can dynamically reflect the capacity degradation, is extracted to update the state variables of state transition function in PF. Accordingly, the fusion of SGM and PF (SGM-PF) can extrapolate the changes of the capacity and realize RUL prediction using fewer data. Furthermore, the performances of SGM-PF are comprehensively validated using two types of batteries aged under different conditions. The RUL prediction results reveal that the SGM-PF framework can achieve precise and reliable predictions in different prediction horizons with as few as 8 data points, and it has prominent performance in accuracy and stability over contrastive methods, especially in long-term prognosis.

Original languageEnglish
Pages (from-to)7435-7449
Number of pages15
JournalInternational Journal of Energy Research
Volume44
Issue number9
Early online date7 May 2020
DOIs
Publication statusPublished - 1 Jul 2020

Bibliographical note

This is the peer reviewed version of the following article: hen, L, Wang, H, Chen, J, et al. A novel remaining useful life prediction framework for lithium‐ion battery using grey model and particle filtering. Int J Energy Res. 2020; 1– 15., which has been published in final form at https://doi.org/10.1002/er.5464.  This article may be used for non-commercial purposes in accordance With Wiley Terms and Conditions for self-archiving.

Keywords

  • grey model
  • lithium-ion battery
  • particle filter
  • prediction
  • remaining useful life

Fingerprint Dive into the research topics of 'A novel remaining useful life prediction framework for lithium-ion battery using grey model and particle filtering'. Together they form a unique fingerprint.

Cite this