Abstract
Accurate protein structure prediction remains an active objective of research in bioinformatics. Membrane proteins comprise approximately 20% of most genomes. They are, however, poorly tractable targets of experimental structure determination. Their analysis using bioinformatics thus makes an important contribution to their on-going study. Using a method based on Bayesian Networks, which provides a flexible and powerful framework for statistical inference, we have addressed the alignment-free discrimination of membrane from non-membrane proteins. The method successfully identifies prokaryotic and eukaryotic α-helical membrane proteins at 94.4% accuracy, β-barrel proteins at 72.4% accuracy, and distinguishes assorted non-membranous proteins with 85.9% accuracy. The method here is an important potential advance in the computational analysis of membrane protein structure. It represents a useful tool for the characterisation of membrane proteins with a wide variety of potential applications.
Original language | English |
---|---|
Pages (from-to) | 208-213 |
Number of pages | 6 |
Journal | Bioinformation |
Volume | 1 |
Issue number | 6 |
Publication status | Published - 2006 |
Bibliographical note
This is an open-access article, which permits unrestricted use, distribution, and reproduction in any medium, for non-commercial purposes, provided the original author and source are credited.Keywords
- alpha-helical membrane proteins
- beta-barrel membrane proteins
- membrane protein discrimination
- Bayesian network
- alignment-free prediction