Catalytic hydrodeoxygenation of m-cresol over Ni2P/hierarchical ZSM-5

Antonio Berenguer, James A. Bennett, James Hunns, Inés Moreno, Juan M. Coronado, Adam F. Lee, Patricia Pizarro, Karen Wilson, David P. Serrano*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review


Bifunctional catalysts comprising Ni2P supported over a hierarchical ZSM-5 zeolite (h-ZSM-5) were synthesized and applied to the hydrodeoxygenation (HDO) of m-cresol, a model pyrolysis bio-oil compound. Surface and bulk characterization of Ni2P/h-ZSM-5 catalysts by XRD, TEM, DRIFTS, TPR, porosimetry and propylamine temperature-programmed desorption reveal that Ni2P incorporation modifies the zeolite textural properties through pore blockage of the mesopores by phosphide nanoparticles, but has negligible impact of the micropore network. Ni2P nanoparticles introduce new, strong Lewis acid sites, whose density is proportional to the Ni2P loading, accompanied by new Brönsted acid sites attributed to the presence of Psingle bondOH moieties. Ni2P/h-ZSM-5 is ultraselective (>97%) for m-cresol HDO to methylcyclohexane, significantly outperforming a reference Ni2P/SiO2 catalyst and highlighting the synergy between metal phosphide and solid acid support. m-Cresol conversion was proportional to Ni2P loading reaching 80 and 91% for 5 and 10 wt% Ni respectively. Turnover frequencies for m-cresol HDO are a strong function of Ni2P dispersion, evidencing a structure sensitivity, with optimum activity observed for 4 nm particles.
Original languageEnglish
Pages (from-to)72-79
JournalCatalysis Today
Early online date24 Aug 2017
Publication statusPublished - 15 Apr 2018

Bibliographical note

© 2017, Elsevier. Licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International

Funding: Spanish Ministry of Economy and Competitiveness (CTQ2014-60209-R); Regional Government of Madrid (S2013/MAE-2882); EPSRC (EP/K036548/2 and EP/N009924/1).


  • hydrodeoxygenation
  • m-cresol
  • nickel phosphide
  • hierarchical ZSM-5


Dive into the research topics of 'Catalytic hydrodeoxygenation of m-cresol over Ni2P/hierarchical ZSM-5'. Together they form a unique fingerprint.

Cite this