Disordered connectivity in the autistic brain: challenges for the 'new psychophysiology'

Gina Rippon*, Jon Brock, Caroline C. Brown, Jill Boucher

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

Abstract

In 2002, we published a paper [Brock, J., Brown, C., Boucher, J., Rippon, G., 2002. The temporal binding deficit hypothesis of autism. Development and Psychopathology 142, 209-224] highlighting the parallels between the psychological model of 'central coherence' in information processing [Frith, U., 1989. Autism: Explaining the Enigma. Blackwell, Oxford] and the neuroscience model of neural integration or 'temporal binding'. We proposed that autism is associated with abnormalities of information integration that is caused by a reduction in the connectivity between specialised local neural networks in the brain and possible overconnectivity within the isolated individual neural assemblies. The current paper updates this model, providing a summary of theoretical and empirical advances in research implicating disordered connectivity in autism. This is in the context of changes in the approach to the core psychological deficits in autism, of greater emphasis on 'interactive specialisation' and the resultant stress on early and/or low-level deficits and their cascading effects on the developing brain [Johnson, M.H., Halit, H., Grice, S.J., Karmiloff-Smith, A., 2002. Neuroimaging of typical and atypical development: a perspective from multiple levels of analysis. Development and Psychopathology 14, 521-536].We also highlight recent developments in the measurement and modelling of connectivity, particularly in the emerging ability to track the temporal dynamics of the brain using electroencephalography (EEG) and magnetoencephalography (MEG) and to investigate the signal characteristics of this activity. This advance could be particularly pertinent in testing an emerging model of effective connectivity based on the balance between excitatory and inhibitory cortical activity [Rubenstein, J.L., Merzenich M.M., 2003. Model of autism: increased ratio of excitation/inhibition in key neural systems. Genes, Brain and Behavior 2, 255-267; Brown, C., Gruber, T., Rippon, G., Brock, J., Boucher, J., 2005. Gamma abnormalities during perception of illusory figures in autism. Cortex 41, 364-376]. Finally, we note that the consequence of this convergence of research developments not only enables a greater understanding of autism but also has implications for prevention and remediation. © 2006.

Original languageEnglish
Pages (from-to)164-172
Number of pages9
JournalInternational Journal of Psychophysiology
Volume63
Issue number2
DOIs
Publication statusPublished - Feb 2007

Keywords

  • autism
  • autistic spectrum disorders
  • brain connectivity
  • magnetoencephalography
  • electroencephalography

Fingerprint

Dive into the research topics of 'Disordered connectivity in the autistic brain: challenges for the 'new psychophysiology''. Together they form a unique fingerprint.

Cite this