Enhanced cAMP generation and insulin-releasing potency of two novel Tyr(1)-modified enzyme-resistant forms of glucose-dependent insulinotropic polypeptide is associated with significant antihyperglycaemic activity in spontaneous obesity-diabetes

Victor A. Gault, Peter R. Flatt, Clifford J. Bailey, Patrick Harriott, Brett Greer, Mark H. Mooney, Finbarr P. M O'Harte

Research output: Contribution to journalArticle

Abstract

Glucose-dependent insulinotropic polypeptide (GIP) is an important incretin hormone, which potentiates glucose-induced insulin secretion. Antihyperglycaemic actions of GIP provide significant potential in Type 11 diabetes therapy. However, inactivation of GIP by the enzyme dipeptidyl peptidase IV (DPP IV) and its consequent short circulating half-life limit its therapeutic use. Therefore two novel Tyr(1)-Modified analogues of GIP, N-Fmoc-GIP (where Fmoc is 9-fluorenylmethoxycarbonyl) and N-palmitate-GIP, were synthesized and tested for metabolic stability and biological activity. Both GIP analogues were resistant to degradation by DPP IV and human plasma. In Chinese hamster lung (CHL) cells expressing the cloned human GIP receptor, both analogues exhibited a 2-fold increase in cAMP-generating potency compared with native GIP (EC50 values of 9.4, 10.0 and 18.2 nM respectively). Using clonal BRIN-BD11 cells, both analogues demonstrated strong insulinotropic activity compared with native GIP (P < 0.01 to P < 0.001). In obese diabetic (ob/ob) mice, administration of N-Fmoc-GIP or N-palmitate-GIP (25 nmol/kg) together with glucose (18 mmol/kg) significantly reduced the peak 15 min glucose excursion (1.4- and 1.5-fold respectively; P < 0.05 to P < 0.01) compared with glucose alone. The area under the curve (AUC) for glucose was significantly lower after administration of either analogue compared with glucose administered alone or in combination with native GIP (1.5-fold; P < 0.05). This was associated with a significantly greater AUC for insulin (2.1-fold; P < 0.001) for both analogues compared with native GIP. A similar pattern of in vivo responsiveness was evident in lean control mice. These data indicate that novel N-terminal Tyr(1) modification of GIP with an Fmoc or palmitate group confers resistance to degradation by DPP IV in plasma, which is reflected by increased in vitro potency and greater insulinotropic and antihyperglycaemic activities in an animal model of Type 11 diabetes mellitus.
Original languageEnglish
Pages (from-to)913-920
Number of pages8
JournalBiochemical Journal
Volume367
Issue numberPart 3
DOIs
Publication statusPublished - Nov 2002

Fingerprint

Medical problems
Hypoglycemic Agents
Obesity
Insulin
Glucose
Peptides
Enzymes
Dipeptidyl Peptidase 4
Palmitates
Area Under Curve
Plasma (human)
Incretins
Degradation
Therapeutic Uses

Keywords

  • dipeptidyl peptidase IV (DPP IV)
  • GIP analogues
  • insulin secretion
  • obese diabetic (ob/ob) mice

Cite this

@article{c9931b1cee1542298a63e704cab7caf3,
title = "Enhanced cAMP generation and insulin-releasing potency of two novel Tyr(1)-modified enzyme-resistant forms of glucose-dependent insulinotropic polypeptide is associated with significant antihyperglycaemic activity in spontaneous obesity-diabetes",
abstract = "Glucose-dependent insulinotropic polypeptide (GIP) is an important incretin hormone, which potentiates glucose-induced insulin secretion. Antihyperglycaemic actions of GIP provide significant potential in Type 11 diabetes therapy. However, inactivation of GIP by the enzyme dipeptidyl peptidase IV (DPP IV) and its consequent short circulating half-life limit its therapeutic use. Therefore two novel Tyr(1)-Modified analogues of GIP, N-Fmoc-GIP (where Fmoc is 9-fluorenylmethoxycarbonyl) and N-palmitate-GIP, were synthesized and tested for metabolic stability and biological activity. Both GIP analogues were resistant to degradation by DPP IV and human plasma. In Chinese hamster lung (CHL) cells expressing the cloned human GIP receptor, both analogues exhibited a 2-fold increase in cAMP-generating potency compared with native GIP (EC50 values of 9.4, 10.0 and 18.2 nM respectively). Using clonal BRIN-BD11 cells, both analogues demonstrated strong insulinotropic activity compared with native GIP (P < 0.01 to P < 0.001). In obese diabetic (ob/ob) mice, administration of N-Fmoc-GIP or N-palmitate-GIP (25 nmol/kg) together with glucose (18 mmol/kg) significantly reduced the peak 15 min glucose excursion (1.4- and 1.5-fold respectively; P < 0.05 to P < 0.01) compared with glucose alone. The area under the curve (AUC) for glucose was significantly lower after administration of either analogue compared with glucose administered alone or in combination with native GIP (1.5-fold; P < 0.05). This was associated with a significantly greater AUC for insulin (2.1-fold; P < 0.001) for both analogues compared with native GIP. A similar pattern of in vivo responsiveness was evident in lean control mice. These data indicate that novel N-terminal Tyr(1) modification of GIP with an Fmoc or palmitate group confers resistance to degradation by DPP IV in plasma, which is reflected by increased in vitro potency and greater insulinotropic and antihyperglycaemic activities in an animal model of Type 11 diabetes mellitus.",
keywords = "dipeptidyl peptidase IV (DPP IV), GIP analogues, insulin secretion, obese diabetic (ob/ob) mice",
author = "Gault, {Victor A.} and Flatt, {Peter R.} and Bailey, {Clifford J.} and Patrick Harriott and Brett Greer and Mooney, {Mark H.} and O'Harte, {Finbarr P. M}",
year = "2002",
month = "11",
doi = "10.1042/BJ20020319",
language = "English",
volume = "367",
pages = "913--920",
journal = "Biochemical Journal",
issn = "0264-6021",
publisher = "Portland Press Ltd.",
number = "Part 3",

}

Enhanced cAMP generation and insulin-releasing potency of two novel Tyr(1)-modified enzyme-resistant forms of glucose-dependent insulinotropic polypeptide is associated with significant antihyperglycaemic activity in spontaneous obesity-diabetes. / Gault, Victor A.; Flatt, Peter R.; Bailey, Clifford J.; Harriott, Patrick; Greer, Brett; Mooney, Mark H.; O'Harte, Finbarr P. M.

In: Biochemical Journal, Vol. 367, No. Part 3, 11.2002, p. 913-920.

Research output: Contribution to journalArticle

TY - JOUR

T1 - Enhanced cAMP generation and insulin-releasing potency of two novel Tyr(1)-modified enzyme-resistant forms of glucose-dependent insulinotropic polypeptide is associated with significant antihyperglycaemic activity in spontaneous obesity-diabetes

AU - Gault, Victor A.

AU - Flatt, Peter R.

AU - Bailey, Clifford J.

AU - Harriott, Patrick

AU - Greer, Brett

AU - Mooney, Mark H.

AU - O'Harte, Finbarr P. M

PY - 2002/11

Y1 - 2002/11

N2 - Glucose-dependent insulinotropic polypeptide (GIP) is an important incretin hormone, which potentiates glucose-induced insulin secretion. Antihyperglycaemic actions of GIP provide significant potential in Type 11 diabetes therapy. However, inactivation of GIP by the enzyme dipeptidyl peptidase IV (DPP IV) and its consequent short circulating half-life limit its therapeutic use. Therefore two novel Tyr(1)-Modified analogues of GIP, N-Fmoc-GIP (where Fmoc is 9-fluorenylmethoxycarbonyl) and N-palmitate-GIP, were synthesized and tested for metabolic stability and biological activity. Both GIP analogues were resistant to degradation by DPP IV and human plasma. In Chinese hamster lung (CHL) cells expressing the cloned human GIP receptor, both analogues exhibited a 2-fold increase in cAMP-generating potency compared with native GIP (EC50 values of 9.4, 10.0 and 18.2 nM respectively). Using clonal BRIN-BD11 cells, both analogues demonstrated strong insulinotropic activity compared with native GIP (P < 0.01 to P < 0.001). In obese diabetic (ob/ob) mice, administration of N-Fmoc-GIP or N-palmitate-GIP (25 nmol/kg) together with glucose (18 mmol/kg) significantly reduced the peak 15 min glucose excursion (1.4- and 1.5-fold respectively; P < 0.05 to P < 0.01) compared with glucose alone. The area under the curve (AUC) for glucose was significantly lower after administration of either analogue compared with glucose administered alone or in combination with native GIP (1.5-fold; P < 0.05). This was associated with a significantly greater AUC for insulin (2.1-fold; P < 0.001) for both analogues compared with native GIP. A similar pattern of in vivo responsiveness was evident in lean control mice. These data indicate that novel N-terminal Tyr(1) modification of GIP with an Fmoc or palmitate group confers resistance to degradation by DPP IV in plasma, which is reflected by increased in vitro potency and greater insulinotropic and antihyperglycaemic activities in an animal model of Type 11 diabetes mellitus.

AB - Glucose-dependent insulinotropic polypeptide (GIP) is an important incretin hormone, which potentiates glucose-induced insulin secretion. Antihyperglycaemic actions of GIP provide significant potential in Type 11 diabetes therapy. However, inactivation of GIP by the enzyme dipeptidyl peptidase IV (DPP IV) and its consequent short circulating half-life limit its therapeutic use. Therefore two novel Tyr(1)-Modified analogues of GIP, N-Fmoc-GIP (where Fmoc is 9-fluorenylmethoxycarbonyl) and N-palmitate-GIP, were synthesized and tested for metabolic stability and biological activity. Both GIP analogues were resistant to degradation by DPP IV and human plasma. In Chinese hamster lung (CHL) cells expressing the cloned human GIP receptor, both analogues exhibited a 2-fold increase in cAMP-generating potency compared with native GIP (EC50 values of 9.4, 10.0 and 18.2 nM respectively). Using clonal BRIN-BD11 cells, both analogues demonstrated strong insulinotropic activity compared with native GIP (P < 0.01 to P < 0.001). In obese diabetic (ob/ob) mice, administration of N-Fmoc-GIP or N-palmitate-GIP (25 nmol/kg) together with glucose (18 mmol/kg) significantly reduced the peak 15 min glucose excursion (1.4- and 1.5-fold respectively; P < 0.05 to P < 0.01) compared with glucose alone. The area under the curve (AUC) for glucose was significantly lower after administration of either analogue compared with glucose administered alone or in combination with native GIP (1.5-fold; P < 0.05). This was associated with a significantly greater AUC for insulin (2.1-fold; P < 0.001) for both analogues compared with native GIP. A similar pattern of in vivo responsiveness was evident in lean control mice. These data indicate that novel N-terminal Tyr(1) modification of GIP with an Fmoc or palmitate group confers resistance to degradation by DPP IV in plasma, which is reflected by increased in vitro potency and greater insulinotropic and antihyperglycaemic activities in an animal model of Type 11 diabetes mellitus.

KW - dipeptidyl peptidase IV (DPP IV)

KW - GIP analogues

KW - insulin secretion

KW - obese diabetic (ob/ob) mice

UR - http://www.biochemj.org/content/367/3/913

U2 - 10.1042/BJ20020319

DO - 10.1042/BJ20020319

M3 - Article

VL - 367

SP - 913

EP - 920

JO - Biochemical Journal

JF - Biochemical Journal

SN - 0264-6021

IS - Part 3

ER -