Intrinsic Carrier Transport of Phase-Pure Homologous 2D Organolead Halide Hybrid Perovskite Single Crystals

M.-K. Li, T.-P. Chen, Y.-F. Lin, C.M. Raghavan, W.-L. Chen, S.-H. Yang, R. Sankar, C.-W. Luo, Y.-M. Chang, C.-W. Chen

Research output: Contribution to journalArticlepeer-review

Abstract

This work reveals the intrinsic carrier transport behavior of 2D organolead halide perovskites based on phase‐pure homologous (n = 1, 2, and 3) Ruddelsden–Popper perovskite (RPP) (BA)2(MA)n−1PbnI3n+1 single crystals. The 2D perovskite field effect transistors with high‐quality exfoliated 2D perovskite bulk crystals are fabricated, and characteristic output and transfer curves are measured from individual single‐crystal flakes with various n values under different temperatures. Unipolar n‐type transport dominated the electrical properties of all these 2D RPP single crystals. The transport behavior of the 2D organolead halide hybrid perovskites exhibits a strong dependence on the n value and the mobility substantially increases as the ratio of the number of inorganic perovskite slabs per organic spacer increases. By extracting the effect of contact resistances, the corrected mobility values for n = 1, 2, and 3 are 2 × 10−3, 8.3 × 10−2, and 1.25 cm2 V−1 s−1 at 77 K, respectively. Furthermore, by combining temperature‐dependent electrical transport and optical measurements, it is found that the origin of the carrier mobility dependence on the phase transition for 2D organolead halide perovskites is very different from that of their 3D counterparts. Our findings offer insight into fundamental carrier transport behavior of 2D organic–inorganic hybrid perovskites based on phase‐pure homologous single crystals.
Original languageEnglish
Article number1803763
Journalsmall
Volume14
Issue number52
Early online date14 Nov 2018
DOIs
Publication statusPublished - 27 Dec 2018

Fingerprint

Dive into the research topics of 'Intrinsic Carrier Transport of Phase-Pure Homologous 2D Organolead Halide Hybrid Perovskite Single Crystals'. Together they form a unique fingerprint.

Cite this