Measurement of scleral thickness in humans using anterior segment optical coherent tomography

Research output: Contribution to journalArticle

Abstract

Anterior segment optical coherent tomography (AS-OCT, Visante; Zeiss) is used to examine meridional variation in anterior scleral thickness (AST) and its association with refractive error, ethnicity and gender. Scleral cross-sections of 74 individuals (28 males; 46 females; aged between 18-40 years (27.7±5.3)) were sampled twice in random order in 8 meridians: [superior (S), inferior (I), nasal (N), temporal (T), superior-temporal (ST), superior-nasal (SN), inferior-temporal (IT) and inferior-nasal (IN)]. AST was measured in 1mm anterior-toposterior increments (designated the A-P distance) from the scleral spur (SS) over a 6mm distance. Axial length and refractive error were measured with a Zeiss IOLMaster biometer and an open-view binocular Shin-Nippon autorefractor. Intra- And inter-observer variability of AST was assessed for each of the 8 meridians. Mixed repeated measures ANOVAs tested meridional and A-P distance differences in AST with refractive error, gender and ethnicity. Only right eye data were analysed. AST (mean±SD) across all meridians and A-P distances was 725±46μm. Meridian SN was the thinnest (662±57μm) and I the thickest (806 ±60μm). Significant differences were found between all meridians (p<0.001), except S:ST, IT:IN, IT:N and IN:N. Significant differences between A-P distances were found except between SS and 6 mm and between 2 and 4mm. AST measurements at 1mm (682±48 μm) were the thinnest and at 6mm (818±49 μm) the thickest (p<0.001); a significant interaction occurred between meridians and A-P distances (p<0.001). AST was significantly greater (p<0.001) in male subjects but no significant differences were found between refractive error or ethnicity. Significant variations in AST occur with regard to meridian and distance from the SS and may have utility in selecting optimum sites for pharmaceutical or surgical intervention.

Original languageEnglish
Article numbere0132902
Number of pages10
JournalPLoS ONE
Volume10
Issue number7
DOIs
Publication statusPublished - 28 Jul 2015

Fingerprint

Optical Tomography
Meridians
tomography
Tomography
Nose
Refractive Errors
nationalities and ethnic groups
Binoculars
Thickness measurement
Analysis of variance (ANOVA)
Observer Variation
gender
Pharmaceutical Preparations
Analysis of Variance
analysis of variance
eyes
drugs

Bibliographical note

© 2015 Buckhurst et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Data are available from the Aston University research archives and can be accessed by researchers who meet the criteria for access to confidential data. Data are available upon request because of ethical restrictions related to confidential clinical information of subjects. Readers may send requests to the corresponding author, Dr. Hetal Buckhurst.

Cite this

@article{2117977dcdee4696b88109e818b111c9,
title = "Measurement of scleral thickness in humans using anterior segment optical coherent tomography",
abstract = "Anterior segment optical coherent tomography (AS-OCT, Visante; Zeiss) is used to examine meridional variation in anterior scleral thickness (AST) and its association with refractive error, ethnicity and gender. Scleral cross-sections of 74 individuals (28 males; 46 females; aged between 18-40 years (27.7±5.3)) were sampled twice in random order in 8 meridians: [superior (S), inferior (I), nasal (N), temporal (T), superior-temporal (ST), superior-nasal (SN), inferior-temporal (IT) and inferior-nasal (IN)]. AST was measured in 1mm anterior-toposterior increments (designated the A-P distance) from the scleral spur (SS) over a 6mm distance. Axial length and refractive error were measured with a Zeiss IOLMaster biometer and an open-view binocular Shin-Nippon autorefractor. Intra- And inter-observer variability of AST was assessed for each of the 8 meridians. Mixed repeated measures ANOVAs tested meridional and A-P distance differences in AST with refractive error, gender and ethnicity. Only right eye data were analysed. AST (mean±SD) across all meridians and A-P distances was 725±46μm. Meridian SN was the thinnest (662±57μm) and I the thickest (806 ±60μm). Significant differences were found between all meridians (p<0.001), except S:ST, IT:IN, IT:N and IN:N. Significant differences between A-P distances were found except between SS and 6 mm and between 2 and 4mm. AST measurements at 1mm (682±48 μm) were the thinnest and at 6mm (818±49 μm) the thickest (p<0.001); a significant interaction occurred between meridians and A-P distances (p<0.001). AST was significantly greater (p<0.001) in male subjects but no significant differences were found between refractive error or ethnicity. Significant variations in AST occur with regard to meridian and distance from the SS and may have utility in selecting optimum sites for pharmaceutical or surgical intervention.",
author = "Buckhurst, {Hetal D.} and Bernard Gilmartin and Cubbidge, {Robert P.} and Logan, {Nicola S.}",
note = "{\circledC} 2015 Buckhurst et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Data are available from the Aston University research archives and can be accessed by researchers who meet the criteria for access to confidential data. Data are available upon request because of ethical restrictions related to confidential clinical information of subjects. Readers may send requests to the corresponding author, Dr. Hetal Buckhurst.",
year = "2015",
month = "7",
day = "28",
doi = "10.1371/journal.pone.0132902",
language = "English",
volume = "10",
journal = "PLoS ONE",
issn = "1932-6203",
publisher = "Public Library of Science",
number = "7",

}

Measurement of scleral thickness in humans using anterior segment optical coherent tomography. / Buckhurst, Hetal D.; Gilmartin, Bernard; Cubbidge, Robert P.; Logan, Nicola S.

In: PLoS ONE, Vol. 10, No. 7, e0132902, 28.07.2015.

Research output: Contribution to journalArticle

TY - JOUR

T1 - Measurement of scleral thickness in humans using anterior segment optical coherent tomography

AU - Buckhurst, Hetal D.

AU - Gilmartin, Bernard

AU - Cubbidge, Robert P.

AU - Logan, Nicola S.

N1 - © 2015 Buckhurst et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Data are available from the Aston University research archives and can be accessed by researchers who meet the criteria for access to confidential data. Data are available upon request because of ethical restrictions related to confidential clinical information of subjects. Readers may send requests to the corresponding author, Dr. Hetal Buckhurst.

PY - 2015/7/28

Y1 - 2015/7/28

N2 - Anterior segment optical coherent tomography (AS-OCT, Visante; Zeiss) is used to examine meridional variation in anterior scleral thickness (AST) and its association with refractive error, ethnicity and gender. Scleral cross-sections of 74 individuals (28 males; 46 females; aged between 18-40 years (27.7±5.3)) were sampled twice in random order in 8 meridians: [superior (S), inferior (I), nasal (N), temporal (T), superior-temporal (ST), superior-nasal (SN), inferior-temporal (IT) and inferior-nasal (IN)]. AST was measured in 1mm anterior-toposterior increments (designated the A-P distance) from the scleral spur (SS) over a 6mm distance. Axial length and refractive error were measured with a Zeiss IOLMaster biometer and an open-view binocular Shin-Nippon autorefractor. Intra- And inter-observer variability of AST was assessed for each of the 8 meridians. Mixed repeated measures ANOVAs tested meridional and A-P distance differences in AST with refractive error, gender and ethnicity. Only right eye data were analysed. AST (mean±SD) across all meridians and A-P distances was 725±46μm. Meridian SN was the thinnest (662±57μm) and I the thickest (806 ±60μm). Significant differences were found between all meridians (p<0.001), except S:ST, IT:IN, IT:N and IN:N. Significant differences between A-P distances were found except between SS and 6 mm and between 2 and 4mm. AST measurements at 1mm (682±48 μm) were the thinnest and at 6mm (818±49 μm) the thickest (p<0.001); a significant interaction occurred between meridians and A-P distances (p<0.001). AST was significantly greater (p<0.001) in male subjects but no significant differences were found between refractive error or ethnicity. Significant variations in AST occur with regard to meridian and distance from the SS and may have utility in selecting optimum sites for pharmaceutical or surgical intervention.

AB - Anterior segment optical coherent tomography (AS-OCT, Visante; Zeiss) is used to examine meridional variation in anterior scleral thickness (AST) and its association with refractive error, ethnicity and gender. Scleral cross-sections of 74 individuals (28 males; 46 females; aged between 18-40 years (27.7±5.3)) were sampled twice in random order in 8 meridians: [superior (S), inferior (I), nasal (N), temporal (T), superior-temporal (ST), superior-nasal (SN), inferior-temporal (IT) and inferior-nasal (IN)]. AST was measured in 1mm anterior-toposterior increments (designated the A-P distance) from the scleral spur (SS) over a 6mm distance. Axial length and refractive error were measured with a Zeiss IOLMaster biometer and an open-view binocular Shin-Nippon autorefractor. Intra- And inter-observer variability of AST was assessed for each of the 8 meridians. Mixed repeated measures ANOVAs tested meridional and A-P distance differences in AST with refractive error, gender and ethnicity. Only right eye data were analysed. AST (mean±SD) across all meridians and A-P distances was 725±46μm. Meridian SN was the thinnest (662±57μm) and I the thickest (806 ±60μm). Significant differences were found between all meridians (p<0.001), except S:ST, IT:IN, IT:N and IN:N. Significant differences between A-P distances were found except between SS and 6 mm and between 2 and 4mm. AST measurements at 1mm (682±48 μm) were the thinnest and at 6mm (818±49 μm) the thickest (p<0.001); a significant interaction occurred between meridians and A-P distances (p<0.001). AST was significantly greater (p<0.001) in male subjects but no significant differences were found between refractive error or ethnicity. Significant variations in AST occur with regard to meridian and distance from the SS and may have utility in selecting optimum sites for pharmaceutical or surgical intervention.

UR - http://www.scopus.com/inward/record.url?scp=84941687203&partnerID=8YFLogxK

U2 - 10.1371/journal.pone.0132902

DO - 10.1371/journal.pone.0132902

M3 - Article

VL - 10

JO - PLoS ONE

JF - PLoS ONE

SN - 1932-6203

IS - 7

M1 - e0132902

ER -