TY - JOUR
T1 - Modulation of functional responses of endothelial cells linked to angiogenesis and inflammation by shear stress
T2 - Differential effects of the mechanotransducer CD31
AU - Glen, Katie
AU - Luu, N. Thin
AU - Ross, Ewan
AU - Buckley, Chris D.
AU - Rainger, G. Ed
AU - Egginton, Stuart
AU - Nash, Gerard B.
PY - 2012/6/1
Y1 - 2012/6/1
N2 - We investigated the roles of the "mechanotransducer" CD31 in the effects of shear stress on endothelial gene expression and functional responses relevant to angiogenesis and inflammation. Human or murine endothelial cells (hEC or mEC) were exposed to different levels of shear stress, while expression of CD31 was modified using siRNA in the hEC, or mEC from CD31 -/- mice. Quantitation of expression of genes linked to inflammation or angiogenesis showed several were sensitive to shear. In a "wound" assay, exposure of endothelial cells (EC) to shear stress tended to align migration with the direction of flow and decrease the rate of closure compared to static cultures. When EC were cultured on filters, shear stress promoted migration away from the luminal surface. EC conditioned by shear stress recruited fewer flowing neutrophils, and showed reduced up-regulation of E-selectin after stimulation with tumor necrosis factor-α (TNF). Use of siRNA against CD31 in the hEC, or testing of mEC from mice lacking CD31, indicated that expression of CD31 was not required for the shear-induced modification of wound closure. However, shear modulation of response to TNF was less effective in the absence of CD31, while reduction of CD31 reduced shear-sensitivity in some genes (e.g., eNOS), but not others (e.g., KLF-2). Thus, CD31 played a role in shear-sensitivity of some genes and of neutrophil recruitment, but not in modulation of endothelial migration. Different mechanotransducers may mediate different functional effects of shear stress. Hence, identification of the specific pathways may provide targets for therapeutic manipulation of angiogenesis or inflammation.
AB - We investigated the roles of the "mechanotransducer" CD31 in the effects of shear stress on endothelial gene expression and functional responses relevant to angiogenesis and inflammation. Human or murine endothelial cells (hEC or mEC) were exposed to different levels of shear stress, while expression of CD31 was modified using siRNA in the hEC, or mEC from CD31 -/- mice. Quantitation of expression of genes linked to inflammation or angiogenesis showed several were sensitive to shear. In a "wound" assay, exposure of endothelial cells (EC) to shear stress tended to align migration with the direction of flow and decrease the rate of closure compared to static cultures. When EC were cultured on filters, shear stress promoted migration away from the luminal surface. EC conditioned by shear stress recruited fewer flowing neutrophils, and showed reduced up-regulation of E-selectin after stimulation with tumor necrosis factor-α (TNF). Use of siRNA against CD31 in the hEC, or testing of mEC from mice lacking CD31, indicated that expression of CD31 was not required for the shear-induced modification of wound closure. However, shear modulation of response to TNF was less effective in the absence of CD31, while reduction of CD31 reduced shear-sensitivity in some genes (e.g., eNOS), but not others (e.g., KLF-2). Thus, CD31 played a role in shear-sensitivity of some genes and of neutrophil recruitment, but not in modulation of endothelial migration. Different mechanotransducers may mediate different functional effects of shear stress. Hence, identification of the specific pathways may provide targets for therapeutic manipulation of angiogenesis or inflammation.
UR - http://www.scopus.com/inward/record.url?scp=84857464676&partnerID=8YFLogxK
UR - https://onlinelibrary.wiley.com/doi/full/10.1002/jcp.23015
U2 - 10.1002/jcp.23015
DO - 10.1002/jcp.23015
M3 - Article
C2 - 21898411
AN - SCOPUS:84857464676
SN - 0021-9541
VL - 227
SP - 2710
EP - 2721
JO - Journal of Cellular Physiology
JF - Journal of Cellular Physiology
IS - 6
ER -