Nanolamellar Tantalum Interfaces in the Osteoblast Adhesion

Rong An, Pengpeng Fan, Mingjun Zhou, Yue Wang, Sunkulp Goel, Xuefeng Zhou, Wei Li, Jingtao Wang

Research output: Contribution to journalArticle

Abstract

The design of topographically patterned surfaces is considered to be a preferable approach for influencing cellular behavior in a controllable manner, in particular to improve the osteogenic ability of bone regeneration. In this study, we fabricated nanolamellar tantalum (Ta) surfaces with lamellar wall thicknesses of 40 and 70 nm. The cells attached to nanolamellar Ta surfaces exhibited higher protein adsorption and expression of β1 integrin, as compared to the nonstructured bulk Ta, which facilitated the initial cell attachment and spreading. We thus, as expected, observed significantly enhanced osteoblast adhesion, growth, and alkaline phosphatase activity on nanolamellar Ta surfaces. However, the beneficial effects of nanolamellar structures on osteogenesis became weaker as the lamellar wall thickness increased. The interaction between cells and Ta surfaces was examined through adhesion forces using atomic force microscopy. Our findings indicated that the Ta surface with a lamellar wall thickness of 40 nm exhibited the strongest stimulatory effect. The observed strongest adhesion force between the cell-attached tip and the Ta surface with a 40 nm thick lamellar wall encouraged the much stronger binding of cells with the surface and thus well-attached, -stretched, and -grown cells. We attributed this to the increase in the available contact area of cells with the thinner nanolamellar Ta surface. The increased contact area allowed the enhancement of the cell surface interaction strength and, thus, improved osteoblast adhesion. This study suggests that the thin nanolamellar topography shows immense potential in improving the clinical performance of dental and orthopedic implants.

Original languageEnglish
Pages (from-to)2480-2489
Number of pages10
JournalLangmuir
Volume35
Issue number7
Early online date23 Jan 2019
DOIs
Publication statusPublished - 19 Feb 2019

Fingerprint

Tantalum
osteoblasts
Osteoblasts
tantalum
adhesion
Adhesion
cells
thick walls
osteogenesis
orthopedics
phosphatases
Phosphatases
regeneration
Orthopedics
surface reactions
bones
attachment
Integrins
Topography
topography

Bibliographical note

This document is the Accepted Manuscript version of a Published Work that appeared in final form in Langmuir, copyright © American Chemical Society after peer review and technical editing by the publisher. To access the final edited and published work see https://pubs.acs.org/doi/10.1021/acs.langmuir.8b02796

Cite this

An, R., Fan, P., Zhou, M., Wang, Y., Goel, S., Zhou, X., ... Wang, J. (2019). Nanolamellar Tantalum Interfaces in the Osteoblast Adhesion. Langmuir, 35(7), 2480-2489. https://doi.org/10.1021/acs.langmuir.8b02796
An, Rong ; Fan, Pengpeng ; Zhou, Mingjun ; Wang, Yue ; Goel, Sunkulp ; Zhou, Xuefeng ; Li, Wei ; Wang, Jingtao. / Nanolamellar Tantalum Interfaces in the Osteoblast Adhesion. In: Langmuir. 2019 ; Vol. 35, No. 7. pp. 2480-2489.
@article{b41c77a939434f36b4cd4ccc2c9b16b0,
title = "Nanolamellar Tantalum Interfaces in the Osteoblast Adhesion",
abstract = "The design of topographically patterned surfaces is considered to be a preferable approach for influencing cellular behavior in a controllable manner, in particular to improve the osteogenic ability of bone regeneration. In this study, we fabricated nanolamellar tantalum (Ta) surfaces with lamellar wall thicknesses of 40 and 70 nm. The cells attached to nanolamellar Ta surfaces exhibited higher protein adsorption and expression of β1 integrin, as compared to the nonstructured bulk Ta, which facilitated the initial cell attachment and spreading. We thus, as expected, observed significantly enhanced osteoblast adhesion, growth, and alkaline phosphatase activity on nanolamellar Ta surfaces. However, the beneficial effects of nanolamellar structures on osteogenesis became weaker as the lamellar wall thickness increased. The interaction between cells and Ta surfaces was examined through adhesion forces using atomic force microscopy. Our findings indicated that the Ta surface with a lamellar wall thickness of 40 nm exhibited the strongest stimulatory effect. The observed strongest adhesion force between the cell-attached tip and the Ta surface with a 40 nm thick lamellar wall encouraged the much stronger binding of cells with the surface and thus well-attached, -stretched, and -grown cells. We attributed this to the increase in the available contact area of cells with the thinner nanolamellar Ta surface. The increased contact area allowed the enhancement of the cell surface interaction strength and, thus, improved osteoblast adhesion. This study suggests that the thin nanolamellar topography shows immense potential in improving the clinical performance of dental and orthopedic implants.",
author = "Rong An and Pengpeng Fan and Mingjun Zhou and Yue Wang and Sunkulp Goel and Xuefeng Zhou and Wei Li and Jingtao Wang",
note = "This document is the Accepted Manuscript version of a Published Work that appeared in final form in Langmuir, copyright {\circledC} American Chemical Society after peer review and technical editing by the publisher. To access the final edited and published work see https://pubs.acs.org/doi/10.1021/acs.langmuir.8b02796",
year = "2019",
month = "2",
day = "19",
doi = "10.1021/acs.langmuir.8b02796",
language = "English",
volume = "35",
pages = "2480--2489",
journal = "Langmuir",
issn = "0743-7463",
publisher = "American Chemical Society",
number = "7",

}

An, R, Fan, P, Zhou, M, Wang, Y, Goel, S, Zhou, X, Li, W & Wang, J 2019, 'Nanolamellar Tantalum Interfaces in the Osteoblast Adhesion', Langmuir, vol. 35, no. 7, pp. 2480-2489. https://doi.org/10.1021/acs.langmuir.8b02796

Nanolamellar Tantalum Interfaces in the Osteoblast Adhesion. / An, Rong; Fan, Pengpeng; Zhou, Mingjun; Wang, Yue; Goel, Sunkulp; Zhou, Xuefeng; Li, Wei; Wang, Jingtao.

In: Langmuir, Vol. 35, No. 7, 19.02.2019, p. 2480-2489.

Research output: Contribution to journalArticle

TY - JOUR

T1 - Nanolamellar Tantalum Interfaces in the Osteoblast Adhesion

AU - An, Rong

AU - Fan, Pengpeng

AU - Zhou, Mingjun

AU - Wang, Yue

AU - Goel, Sunkulp

AU - Zhou, Xuefeng

AU - Li, Wei

AU - Wang, Jingtao

N1 - This document is the Accepted Manuscript version of a Published Work that appeared in final form in Langmuir, copyright © American Chemical Society after peer review and technical editing by the publisher. To access the final edited and published work see https://pubs.acs.org/doi/10.1021/acs.langmuir.8b02796

PY - 2019/2/19

Y1 - 2019/2/19

N2 - The design of topographically patterned surfaces is considered to be a preferable approach for influencing cellular behavior in a controllable manner, in particular to improve the osteogenic ability of bone regeneration. In this study, we fabricated nanolamellar tantalum (Ta) surfaces with lamellar wall thicknesses of 40 and 70 nm. The cells attached to nanolamellar Ta surfaces exhibited higher protein adsorption and expression of β1 integrin, as compared to the nonstructured bulk Ta, which facilitated the initial cell attachment and spreading. We thus, as expected, observed significantly enhanced osteoblast adhesion, growth, and alkaline phosphatase activity on nanolamellar Ta surfaces. However, the beneficial effects of nanolamellar structures on osteogenesis became weaker as the lamellar wall thickness increased. The interaction between cells and Ta surfaces was examined through adhesion forces using atomic force microscopy. Our findings indicated that the Ta surface with a lamellar wall thickness of 40 nm exhibited the strongest stimulatory effect. The observed strongest adhesion force between the cell-attached tip and the Ta surface with a 40 nm thick lamellar wall encouraged the much stronger binding of cells with the surface and thus well-attached, -stretched, and -grown cells. We attributed this to the increase in the available contact area of cells with the thinner nanolamellar Ta surface. The increased contact area allowed the enhancement of the cell surface interaction strength and, thus, improved osteoblast adhesion. This study suggests that the thin nanolamellar topography shows immense potential in improving the clinical performance of dental and orthopedic implants.

AB - The design of topographically patterned surfaces is considered to be a preferable approach for influencing cellular behavior in a controllable manner, in particular to improve the osteogenic ability of bone regeneration. In this study, we fabricated nanolamellar tantalum (Ta) surfaces with lamellar wall thicknesses of 40 and 70 nm. The cells attached to nanolamellar Ta surfaces exhibited higher protein adsorption and expression of β1 integrin, as compared to the nonstructured bulk Ta, which facilitated the initial cell attachment and spreading. We thus, as expected, observed significantly enhanced osteoblast adhesion, growth, and alkaline phosphatase activity on nanolamellar Ta surfaces. However, the beneficial effects of nanolamellar structures on osteogenesis became weaker as the lamellar wall thickness increased. The interaction between cells and Ta surfaces was examined through adhesion forces using atomic force microscopy. Our findings indicated that the Ta surface with a lamellar wall thickness of 40 nm exhibited the strongest stimulatory effect. The observed strongest adhesion force between the cell-attached tip and the Ta surface with a 40 nm thick lamellar wall encouraged the much stronger binding of cells with the surface and thus well-attached, -stretched, and -grown cells. We attributed this to the increase in the available contact area of cells with the thinner nanolamellar Ta surface. The increased contact area allowed the enhancement of the cell surface interaction strength and, thus, improved osteoblast adhesion. This study suggests that the thin nanolamellar topography shows immense potential in improving the clinical performance of dental and orthopedic implants.

UR - https://pubs.acs.org/doi/10.1021/acs.langmuir.8b02796

UR - http://www.scopus.com/inward/record.url?scp=85061494973&partnerID=8YFLogxK

U2 - 10.1021/acs.langmuir.8b02796

DO - 10.1021/acs.langmuir.8b02796

M3 - Article

C2 - 30673289

VL - 35

SP - 2480

EP - 2489

JO - Langmuir

JF - Langmuir

SN - 0743-7463

IS - 7

ER -

An R, Fan P, Zhou M, Wang Y, Goel S, Zhou X et al. Nanolamellar Tantalum Interfaces in the Osteoblast Adhesion. Langmuir. 2019 Feb 19;35(7):2480-2489. https://doi.org/10.1021/acs.langmuir.8b02796