New approach to estimate macro and micronutrients in potato plants based on foliar spectral reflectance

Reem Abukmeil, Ahmad Al-Mallahi*, Felipe Campelo

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

Abstract

Tissue testing used to assess the chemical contents in potato plants is considered laborious, time-consuming, destructive, and expensive. Ground-based sensors have been assessed to provide efficient information on nitrogen using leaf canopy reflectance. In potatoes, however, the main organ required for tissue testing is the petiole to estimate the elements of all nutrients. This research aims to assess whether there is a correlation between the chemical contents of potato petioles and leaf spectrum, and to examine whether the spectrum of dried or fresh leaves have higher correlation values. Petiole chemical contents of all elements were tested as a reference point. Leaves were split equally into dried and fresh groups for spectral analysis (400–2500 nm). Lasso Regression models were built to estimate concentrations in comparison to actual values. The performances of the model were tested using the Ratio of (standard error of) Prediction to (standard) Deviation (RPD). All elements showed reasonable to excellent RPD values except for sodium. All elements showed higher correlation in the dried testing mode except for nitrogen and potassium. The models showed that the most significant wavebands were in the visible and very near infrared range (400–1100 nm) for all macronutrients except magnesium and sulfur, while all micronutrients had the most significant wavebands in full range (400–2500 nm) with a common significant waveband at 1932 nm. The results show high potentials of a new approach to estimate potato plant elements based on foliar spectral reflectance.
Original languageEnglish
Article number107074
JournalComputers and Electronics in Agriculture
Volume198
Early online date28 May 2022
DOIs
Publication statusE-pub ahead of print - 28 May 2022

Bibliographical note

© 2022, Elsevier. Licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International http://creativecommons.org/licenses/by-nc-nd/4.0/

Fingerprint

Dive into the research topics of 'New approach to estimate macro and micronutrients in potato plants based on foliar spectral reflectance'. Together they form a unique fingerprint.

Cite this