Nifedipine promotes the proliferation and migration of breast cancer cells

Dong-Qing Guo, Hao Zhang, Yuchun Gu, Sheng-Jiang Tan

Research output: Contribution to journalArticlepeer-review

Abstract

Nifedipine is widely used as a calcium channel blocker (CCB) to treat angina and hypertension,but it is controversial with respect the risk of stimulation of cancers. In this study, we demonstrated that nifedipine promoted the proliferation and migration of breast cancer cells both invivo and invitro. However, verapamil, another calcium channel blocker, didn’t exert the similar effects. Nifedipine and high concentration KCl failed to alter the [Ca2+]i in MDA-MB-231 cells, suggesting that such nifedipine effect was not related with calcium channel. Moreover, nifedipine decreased miRNA-524-5p, resulting in the up-regulation of brain protein I3 (BRI3). Erk pathway was consequently activated and led to the proliferation and migration of breast cancer cells. Silencing BRI3 reversed the promoting effect of nifedipine on the breast cancer. In a summary, nifedipine stimulated the proliferation and migration of breast cancer cells via the axis of miRNA-524-5p-BRI3–Erk pathway independently of its calcium channel-blocking activity. Our findings highlight that nifedipine but not verapamil is conducive for breast cancer growth and metastasis, urging that the caution should be taken in clinic to prescribe nifedipine to women who suffering both hypertension and breast cancer, and hypertension with a tendency in breast cancers.
Original languageEnglish
Article numbere113649
JournalPLoS ONE
Volume9
Issue number12
DOIs
Publication statusPublished - 1 Dec 2014

Bibliographical note

© 2014 Guo et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Fingerprint

Dive into the research topics of 'Nifedipine promotes the proliferation and migration of breast cancer cells'. Together they form a unique fingerprint.

Cite this