Resonance optimization of polychromatic light in disordered structures

Hongwei Yin, Adenowo Gbadebo, Elena Turitsyna*, Sergei K. Turitsyn

*Corresponding author for this work

Research output: Contribution to journalArticle

Abstract

Disorder offers rich possibilities for manipulating the phase and intensity of light and designing photonic devices for various applications including random lasers, light storage, and speckle-free imaging. Disorder-based optical systems can be implemented in one-dimensional structures based on random or pseudo-random alternating layers with different refractive indices. Such structures can be treated as sequences of scatterers, in which spatial light localization is characterized by random sets of spectral transmission resonances, each accompanied by a relatively high-intensity concentration. The control and manipulation of resonances is the key element in designing disorder-based photonic systems. In this work, we introduce a method of controlling disorder-induced resonances by using the established non-trivial interconnection between the symmetry of bi-directional light propagation properties and the features of the resonant transmissions. Considering a fiber with resonant Bragg gratings as an example, the mechanism of enhancing or suppressing the resonant transmission of polychromatic light and the effectiveness of the method have been demonstrated both theoretically and experimentally. The proposed algorithm of controlling disorder-induced resonances is general and applicable to classical waves and quantum particles, for disordered systems both with and without gain.
Original languageEnglish
Article number8042
Number of pages12
JournalScientific Reports
Volume7
DOIs
Publication statusPublished - 14 Aug 2017

Fingerprint

disorders
optimization
photonics
Bragg gratings
manipulators
refractivity
fibers
propagation
symmetry
scattering
lasers

Bibliographical note

© The Author(s) 2017. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

Cite this

@article{ed4d226de9ad4bd3b1acb5fd2df48fe4,
title = "Resonance optimization of polychromatic light in disordered structures",
abstract = "Disorder offers rich possibilities for manipulating the phase and intensity of light and designing photonic devices for various applications including random lasers, light storage, and speckle-free imaging. Disorder-based optical systems can be implemented in one-dimensional structures based on random or pseudo-random alternating layers with different refractive indices. Such structures can be treated as sequences of scatterers, in which spatial light localization is characterized by random sets of spectral transmission resonances, each accompanied by a relatively high-intensity concentration. The control and manipulation of resonances is the key element in designing disorder-based photonic systems. In this work, we introduce a method of controlling disorder-induced resonances by using the established non-trivial interconnection between the symmetry of bi-directional light propagation properties and the features of the resonant transmissions. Considering a fiber with resonant Bragg gratings as an example, the mechanism of enhancing or suppressing the resonant transmission of polychromatic light and the effectiveness of the method have been demonstrated both theoretically and experimentally. The proposed algorithm of controlling disorder-induced resonances is general and applicable to classical waves and quantum particles, for disordered systems both with and without gain.",
author = "Hongwei Yin and Adenowo Gbadebo and Elena Turitsyna and Turitsyn, {Sergei K.}",
note = "{\circledC} The Author(s) 2017. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.",
year = "2017",
month = "8",
day = "14",
doi = "10.1038/s41598-017-08635-1",
language = "English",
volume = "7",
journal = "Scientific Reports",
issn = "2045-2322",
publisher = "Nature Publishing Group",

}

Resonance optimization of polychromatic light in disordered structures. / Yin, Hongwei; Gbadebo, Adenowo; Turitsyna, Elena; Turitsyn, Sergei K.

In: Scientific Reports, Vol. 7, 8042, 14.08.2017.

Research output: Contribution to journalArticle

TY - JOUR

T1 - Resonance optimization of polychromatic light in disordered structures

AU - Yin, Hongwei

AU - Gbadebo, Adenowo

AU - Turitsyna, Elena

AU - Turitsyn, Sergei K.

N1 - © The Author(s) 2017. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

PY - 2017/8/14

Y1 - 2017/8/14

N2 - Disorder offers rich possibilities for manipulating the phase and intensity of light and designing photonic devices for various applications including random lasers, light storage, and speckle-free imaging. Disorder-based optical systems can be implemented in one-dimensional structures based on random or pseudo-random alternating layers with different refractive indices. Such structures can be treated as sequences of scatterers, in which spatial light localization is characterized by random sets of spectral transmission resonances, each accompanied by a relatively high-intensity concentration. The control and manipulation of resonances is the key element in designing disorder-based photonic systems. In this work, we introduce a method of controlling disorder-induced resonances by using the established non-trivial interconnection between the symmetry of bi-directional light propagation properties and the features of the resonant transmissions. Considering a fiber with resonant Bragg gratings as an example, the mechanism of enhancing or suppressing the resonant transmission of polychromatic light and the effectiveness of the method have been demonstrated both theoretically and experimentally. The proposed algorithm of controlling disorder-induced resonances is general and applicable to classical waves and quantum particles, for disordered systems both with and without gain.

AB - Disorder offers rich possibilities for manipulating the phase and intensity of light and designing photonic devices for various applications including random lasers, light storage, and speckle-free imaging. Disorder-based optical systems can be implemented in one-dimensional structures based on random or pseudo-random alternating layers with different refractive indices. Such structures can be treated as sequences of scatterers, in which spatial light localization is characterized by random sets of spectral transmission resonances, each accompanied by a relatively high-intensity concentration. The control and manipulation of resonances is the key element in designing disorder-based photonic systems. In this work, we introduce a method of controlling disorder-induced resonances by using the established non-trivial interconnection between the symmetry of bi-directional light propagation properties and the features of the resonant transmissions. Considering a fiber with resonant Bragg gratings as an example, the mechanism of enhancing or suppressing the resonant transmission of polychromatic light and the effectiveness of the method have been demonstrated both theoretically and experimentally. The proposed algorithm of controlling disorder-induced resonances is general and applicable to classical waves and quantum particles, for disordered systems both with and without gain.

UR - https://www.nature.com/articles/s41598-017-08635-1

UR - http://www.scopus.com/inward/record.url?scp=85027507007&partnerID=8YFLogxK

U2 - 10.1038/s41598-017-08635-1

DO - 10.1038/s41598-017-08635-1

M3 - Article

AN - SCOPUS:85027507007

VL - 7

JO - Scientific Reports

JF - Scientific Reports

SN - 2045-2322

M1 - 8042

ER -