Abstract
The energy conversion of nickel-impregnated coconut shells using supercritical water has not yet been explored. The impregnation process was conducted at room temperature and a pH of 5.80 for 72 h. Characterization of the prepared sample confirmed the presence of nickel nanoparticles with an average size of 7.15 nm. The gasification of control and impregnated samples was performed at 400–500 °C, biomass loading from 20 to 30 wt% and residence time from 20 to 60 min. The response surface methodology (RSM) approach, with a Box–Behnken method, was used to design the experiments. The optimization model showed that the non-catalytic process at 500 °C, 60 min and 20 wt% of biomass loading could promote an H2 yield of 8.8 mol% and gasification efficiency of 47.6%. The gasification of nickel-impregnated coconut shells showed significantly higher gasification efficiency (58.6%) and hydrogen yield (17.2 mol%) with greater carbon and hydrogen efficiencies (109.4 and 116.9%) when compared to the non-catalytic process. The presence of nickel particles in the biomass matrix as nanocatalysts promoted higher hydrogen production and supercritical water gasification efficiency.
Original language | English |
---|---|
Article number | 3563 |
Number of pages | 34 |
Journal | Energies |
Volume | 16 |
Issue number | 8 |
Early online date | 20 Apr 2023 |
DOIs | |
Publication status | Published - 20 Apr 2023 |
Bibliographical note
Copyright © 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).Keywords
- Energy (miscellaneous)
- Energy Engineering and Power Technology
- Renewable Energy, Sustainability and the Environment
- Electrical and Electronic Engineering
- Control and Optimization
- Engineering (miscellaneous)
- Building and Construction