Vermicious thermo-responsive Pickering emulsifiers

K. L. Thompson, L. A. Fielding, O. O. Mykhaylyk, J. A. Lane, M. J. Derry, S. P. Armes

Research output: Contribution to journalArticlepeer-review

Abstract

Thermo-responsive vermicious (or worm-like) diblock copolymer nanoparticles prepared directly in n-dodecane via polymerisation-induced self-assembly (PISA) were used to stabilise water-in-oil Pickering emulsions. Mean droplet diameters could be tuned from 8 to 117 μm by varying the worm copolymer concentration and the water volume fraction and very high worm adsorption efficiencies (∼100%) could be obtained below a certain critical copolymer concentration (∼0.50%). Heating a worm dispersion up to 150 °C led to a worm-to-sphere transition, which proved to be irreversible if conducted at sufficiently low copolymer concentration. This affords a rare opportunity to directly compare the Pickering emulsifier performance of chemically identical worms and spheres. It is found that the former nanoparticles are markedly more efficient, since worm-stabilised water droplets are always smaller than the equivalent sphere-stabilised droplets prepared under identical conditions. Moreover, the latter emulsions are appreciably flocculated, whereas the former emulsions proved to be stable. SAXS studies indicate that the mean thickness of the adsorbed worm layer surrounding the water droplets is comparable to that of the worm cross-section diameter determined for non-adsorbed worms dispersed in the continuous phase. Thus the adsorbed worms form a monolayer shell around the water droplets, rather than ill-defined multilayers. Under certain conditions, demulsification occurs on heating as a result of a partial worm-to-sphere morphological transition.
Original languageEnglish
Pages (from-to)4207-4214
JournalChemical Science
Volume6
Issue number7
DOIs
Publication statusPublished - 7 May 2015

Bibliographical note

This article is licensed under a Creative Commons Attribution 3.0 Unported Licence.

Fingerprint

Dive into the research topics of 'Vermicious thermo-responsive Pickering emulsifiers'. Together they form a unique fingerprint.

Cite this