40Gbit/s dispersion managed soliton transmission

  • Robin Anthony Ibbotson

Student thesis: Doctoral ThesisDoctor of Philosophy

Abstract

This thesis contains the results of experimental and numerical simulations of optical transmission systems using dispersion managed transmission techniques. Theoretical background is given on the propagation of pulses in optical fibres before extending the arguments to optical solitons, their applications and uses in communications. Dispersion management for transmission systems is introduced and then a brief explanation of quasi-linear pulse propagation is given. Techniques for performing laboratory transmission experiments are divulged and focus on the construction and operation of a recirculating loop. Laser sources and modulators for 40Gbit/s transmission rates are discussed and techniques for acquiring information from the resultant eye are explained.The operation of optically time division demultiplexing with a nonlinear elecro-absorption modulator is considered and then is replaced by the used of a linear electro-optic modulator and Dispersion unbalanced loop mirror (DILM). The use of nonlinearity as a positive effect for the use of processing and regenerating optical data is approached with an insight into the operation interferometers. Successful experimental results are given for the characterisation of the DILM and 40Gbit/ to l0Gbit/s demultiplexing is demonstrated.Modelling of a terrestrial style system is performed and the methods for computer simulation are discussed. The simulations model single channel 40Gbit/s transmission, 16 x 40Gbit/s WDM transmission and WDM transmission with varying channel separation. Three modulation formats are examined over the single mode fibre span. It is found that the dispersion managed soliton is not suitable for terrestrial style systems and that return-to-zero was the optimum format for the considered system.
Date of AwardDec 2005
LanguageEnglish
SupervisorNick Doran (Supervisor) & Keith Blow (Supervisor)

Keywords

  • nonlinear optics
  • optic fibres
  • optical solitons
  • optical networks
  • dispersion management
  • nonlinear optical loop mirrors

Cite this

40Gbit/s dispersion managed soliton transmission
Ibbotson, R. A. (Author). Dec 2005

Student thesis: Doctoral ThesisDoctor of Philosophy