Abstract
One of the current challenges in the post-operative treatment of breast cancer is to develop a local therapeutic vector for preventing recurrence and metastasis. Herein, we develop a core-shell fibrous scaffold comprising phase-change materials and photothermal/chemotherapy agents, as a thermal trigger for programmable-response drug release and synergistic treatment. The scaffold is obtained by in situ growth of a zeolitic imidazolate framework-8 (ZIF-8) shell on the surface of poly(butylene succinate)/lauric acid (PBS/LA) phase-change fibers (PCFs) to create PCF@ZIF-8. After optimizing the core-shell and phase transition behavior, gold nanorods (GNRs) and doxorubicin hydrochloride (DOX) co-loaded PCF@ZIF-8 scaffolds were shown to significantly enhance in vitro and in vivo anticancer efficacy. In a healthy tissue microenvironment at pH 7.4, the ZIF-8 shell ensures the sustained release of DOX. If the tumor recurs, the acidic microenvironment induces the decomposition of the ZIF-8 shell. Under the second near-infrared (NIR-II) laser treatment, GNR-induced thermal not only directly destroys the relapsed tumor cells but also accelerates DOX release by inducing the phase transition of LA. Our study sheds light on a well-designed programmable-response trigger, which provides a promising strategy for post-operative recurrence prevention of cancer.
Original language | English |
---|---|
Pages (from-to) | 60837-60851 |
Number of pages | 15 |
Journal | ACS Applied Materials & Interfaces |
Volume | 13 |
Issue number | 51 |
Early online date | 16 Dec 2021 |
DOIs | |
Publication status | Published - 29 Dec 2021 |
Bibliographical note
This document is the Accepted Manuscript version of a Published Work that appeared in final form in ACS Applied Materials and Interfaces, copyright © American Chemical Society after peer review and technical editing by the publisher. To access the final edited and published work see https://pubs.acs.org/doi/10.1021/acsami.1c16283Keywords
- core−shell fiber
- photothermal-chemotherapy
- post-operative cancer recurrence
- electrospinning
- phase-change fiber
- programmable-response